

Project: ISOLDE: customizable Instruction Sets and Open Leveraged Designs of
Embedded riscv processors

Reference number: 101112274

Project duration: 01.05.2023 - 30.04.2026

Work Package: WP2: Open-Source Foundation Cores

Deliverable D2.2

Title Intermediate report on foundational IP cores

Type of deliverable: Report

Deadline: 31.10.2024

Creation date: 31.10.2024

Authors: Nils Wessman, GSL
Rafael Tornero, UPV
Carles Hernández, UPV
André Sintzoff, TDIS
Holger Blasum, SYSGO
Esther Soriano, FEN
Mihai Munteanu, Honorius Galmeanu (FotoNation, former XPERI)
Matteo Perotti, ETHZ
Catalin Ciobanu, Alexandru Puscasu (IMT)
Sylvain Girbal, Daniel Gracia Pérez (TRT)
Mladen Berekovic (UZL)

Involved grant recipients: Frontgrade Gaisler AB (GSL)
Universitat Politècnica de València (UPV)
Thales DIS France SAS (TDIS)
SYSGO GmbH (SYSGO)
Fent Innovative Software Solutions S.L. (FEN)
FotoNation SRL (former XPERI)
Eidgenoessische Technische Hochschule Zuerich (ETHZ)
National Institute for Research and Development in Microtechnologies
(IMT)
Thales Research & Technology (TRT)
Universität zu Lübeck (UZL)

Contacts: André Sintzoff, TDIS, andre.sintzoff@thalesgroup.com

mailto:jean-roch.coulon@thalesgroup.com

Deliverable D2.2 ISOLDE Page: 2

D2.2 ISOLDE - public 31.10.2024

Table of Contents
Table of Contents 2

1 Executive Summary 4

2 Introduction 4

2.1 Scope 4

2.1.1 Applicable documents 4

2.1.2 Reference documents 4

2.1.3 Definitions and Acronyms 5

3 Processor IP: Performance analysis, safety, and improvements 5

3.1 NOEL-V processor extensions (GSL) 6

3.1.1 Support for shadow stack (Zicfiss) and Landing pad (Zicfilp) RISC-V extensions. 6

3.1.2 Support for RISC-V Cryptography extensions. 6

3.1.3 Extend NOEL-V processor system to support trusted execution environment. 7

3.1.4 Generate IP-XACT description for the NOEL-V subsystem. 8

3.2 CVA6 processor (TDIS) 8

3.2.1 Support for post quantum cryptography extensions 8

3.2.2 Configurable RTL 8

3.3 Testing Design Parameters for CVA6 (UZL) 11

3.3.1 Setup of SoC Generator and CVA6 Configuration 11

3.3.2 Choice of design parameters and benchmarking 11

4 Peripheral and interconnect IP cores 11

4.1 Peripherals 12

4.1.1 GRLIB peripheral IPs (GSL) 12

4.1.2 Improved L2C-lite (UPV) 12

4.1.3 Timer (IFX) 12

4.1.4 Interrupt Controller (IFX) 13

4.2 Interconnects 13

4.2.1 Wormhole NoC (UPV) 13

4.2.2 AXI traffic sniffer (UPV) 14

4.2.3 Context-Aware BUS (CA-BUS) - TRT 14

4.2.4 AHB Bridge (IFX) 16

5 Common extension interfaces 16

5.1 Collaboration on a common coprocessor/accelerator interface 16

5.2 RISC-V accelerator interface for RISC-V core (IMT) 16

5.3 Memory bank accelerator interface for RISC-V core – XPERI 17

5.4 Context-Aware Core Extension (CA-CORE) - TRT 19

5.5 Integration and test of accelerator cores with NOEL-V (GSL) 20

Deliverable D2.2 ISOLDE Page: 3

D2.2 ISOLDE - public 31.10.2024

5.6 Common coprocessor interface for CVA6 (TDIS) 21

5.7 XIF for CVA6 and Vector Accelerator (ETHZ) 23

5.8 OS support for WP3 Vector Accelerator (ETHZ) 23

6 Software interfaces to general purpose cores 24

6.1 XNG RISC-V BSP to support new NOEL-V features (FEN) 24

6.2 NOEL-V software tools (GSL) 24

6.3 System software support (SYSGO) 24

7 Conclusion 24

Deliverable D2.2 ISOLDE Page: 4

D2.2 ISOLDE - public 31.10.2024

1 Executive Summary
This document describes the work performed within ISOLDE WP2 Open-Source Foundation
Cores. It is the update of document deliverable D.2.1 (M6). WP2 is developing IPs that will be
delivered through internal repositories during the work and finally through the ISOLDE virtual
repository. WP2 progress will be reported through update of this report that will be issued as
document deliverable D2.3 (M33).

The requirements and specifications for the work to be performed is established in WP1. At
the time of issuing this report, much of the work to be carried out in WP2 is now in the imple-
mentation stage.

2 Introduction

2.1 Scope

This document provides a description and progress report on the work performed in WP2. The
development in WP2 is based on the specifications and requirements generated in WP1. Some
parts of the technical descriptions from document D1.2 [AD02] and document D1.4 [AD03] are
reused in the work descriptions in this report to make this document self-contained.

The document organised with main headings with the same names and in the same order as
the tasks within WP2 [AD01]. The current development status is provided as subsections for
each task with an overview of the work to be performed and the current status.

Progress will continue to be reported in updates of this document that will be issued as the
D2.3 deliverables.

2.1.1 Applicable documents

Internal
code / DRL

Refer-
ence

Issue Rev. Title

AD01
Grant Agreement Project 1011112274 -
ISOLDE

AD02 D1.2 1 0
Requirements and specifications on architec-
ture, hardware and software modules and IPs

AD03 D1.4 1 0
Consolidated requirements and specifications
on architecture, hardware and software mod-
ules and IPs

2.1.2 Reference documents

Internal
code / DRL

Refer-
ence

Issue /
Rev.

Date Title

RD1 CV-X-IF 1.0
Core-V eXtension interface (CV-X-IF) specifi-
cation: https://github.com/openhwgroup/core-
v-xif/releases/tag/v1.0.0

Deliverable D2.2 ISOLDE Page: 5

D2.2 ISOLDE - public 31.10.2024

2.1.3 Definitions and Acronyms

Acronym Definition

AHB Advanced High-performance Bus

AIA Advanced Interrupt Architecture

APB Advanced Peripheral Bus

APLIC Advanced Platform-Lecel Interrupt Controller

AXI Advanced eXtensible Interface

BSP Board Support Package

CFI Control Flow Integrity

CLIC Core-Local Interrupt Controller

COP Call-Oriented Programming

CSR Control and Status Register

CVA6 Core-V Application 6 stages processor

CV-XIF Core-V eXtension InterFace

EDA Electronic Design Automation

JOP Jump-Oriented Programming

L2C Level 2 Cache

MSI Message-signaled interrupt

NoC Network on Chip

NOEL-V (Not an acronym)

NTT Number Theoretic Transform

PQC Post Quantum Cryptography

PWM Pulse Width Modulation

ROP Return-Oriented Programming

RTL Register-Transfer Level

SoC System on Chip

XNG XtratuM Next Generation

3 Processor IP: Performance analysis, safety, and
improvements

In this section, we describe the work on processor cores improvements, including extensions
(e.g. for safety and security purposes) and core configurability (to support the various demon-
strator needs). For each task, a short description and the status about the work already done
is provided.

Deliverable D2.2 ISOLDE Page: 6

D2.2 ISOLDE - public 31.10.2024

3.1 NOEL-V processor extensions (GSL)

The NOEL-V processor will be extended with security features defined in the Control-Flow
Integrity (CFI) RISC-V extension. Work will also be performed towards supporting a trusted
execution environment and the cryptography Extensions.

3.1.1 Support for shadow stack (Zicfiss) and Landing pad (Zicfilp) RISC-V extensions.

The RISC-V CFI extension has been identified as a desirable security feature. This extension
helps defend against both Return-Oriented Programming (ROP) and Call/Jump-Oriented Pro-
gramming (COP/JOP) attacks, when code is compiled with tools that support these extensions.

ROP protection relies on special instructions to store return addresses in a protected shadow
stack and checking these before using them. Currently the shadow stack protection is done
via page tables, so it requires the availability and use of an MMU. During the development of
Zicfiss, protection on the PMP (physical memory protection) level was considered, which would
enable shadow stack protection in machine mode and on systems without an MMU - this may
possibly return in a future update to the standard.

When COP/JOP protection is enabled, indirect jumps/calls require a matching "landing pad"
as the first instruction at the destination. In its simplest form, all legal "landing pads" can look
the same, but it is also possible to make use of a call graph to only allow specific caller/callee
combinations. Unlike Zicfiss, Zicfilp is usable in all processor modes.

Current status

The Zicfilp and Zicfiss extensions were ratified in June 2024. Testing has not shown any prob-
lems with the current implementation in NOEL-V.

3.1.2 Support for RISC-V Cryptography extensions.

To support the increased demand for security, the RISC-V standard cryptography extension
Zk is being implemented in the NOEL-V processor (Figure 1). This extension enables fast
cryptographic operations by leveraging specialized hardware to accelerate key cryptographic
algorithms, making it ideal for embedded systems with high security requirements. The devel-
opment plan includes the implementation of the following sub-extensions within the Zk stand-
ard:

• NIST Algorithm (Zkn):
o AES Encryption (Zknd)
o AES Decryption (Zkne)
o SHA-2 Functions (Zknh)
o Bit Manipulation (Zbkb) – already implemented in NOEL-V
o Carry-less Multiplication (Zbkc) – already implemented in NOEL-V
o Cross-bar Permutation (Zbkx) – already implemented in NOEL-V

• Entropy Source (Zkr)

• Data Independent Execution Latency (Zkt)
Non-standard Zk instructions, such as those related to SM3 and SM4, have been excluded
from the implementation plan.

To support these cryptographic instructions, a dedicated Crypto Unit has been integrated into
the NOEL-V processor. This unit works in parallel with other functional units, such as the ALU
and MUL, without stalling the pipeline. Crypto Unit is shared between both lanes, so issuing
two cryptographic instructions in the same cycle is not allowed.

Deliverable D2.2 ISOLDE Page: 7

D2.2 ISOLDE - public 31.10.2024

Figure 1: NOEL-V Pipeline Diagram Highlighting the Integrated Crypto Unit

To verify the implementation of this extension, official RISC-V Architectural Tests will be used
to ensure full compliance and functionality of the cryptographic instructions implemented within
NOEL-V. These tests cover:

• Register and immediate field coverage.

• Input patterns: single-bit, random, and byte-count.

• S-Box testing for AES.

• Forwarding and hazard checks in real-world sequences.

• Entropy source testing.

• Constant-time execution.

Current status

The control logic required for decoding, exception handling, and data forwarding has been
added into the NOEL-V pipeline, ensuring smooth integration of the Crypto Unit into the pro-
cessor architecture. Within the Crypto Unit, the logic for processing all SHA instructions has
been fully implemented, while the logic for processing AES instructions is still under develop-
ment.

To early test the SHA instructions implemented in the NOEL-V processor, C++ tests have been
developed: one for the RV32 configuration and another for RV64. These tests execute each
SHA instruction and compare the results against manually calculated expected values.

3.1.3 Extend NOEL-V processor system to support trusted execution environment.

In the context of the ISOLDE project the RISC-V standardization of “World Guard” will be fol-
lowed and evaluated. Following this, NOEL-V should be updated to support this.

Deliverable D2.2 ISOLDE Page: 8

D2.2 ISOLDE - public 31.10.2024

Current status

Currently no work has yet been done for this task.

3.1.4 Generate IP-XACT description for the NOEL-V subsystem.

To support integration of the NOEL-V processor system into the demonstrator design an IP-
XACT description will be generated. This will make it easier to integrate the processor using
EDA tools like Xilinx Vivado.

Current status

This work has been descoped due to less need for the demonstrator development then antic-
ipated and custom IP-XACT definitions used by EDA tools.

3.2 CVA6 processor (TDIS)

The CVA6 processor will be extended to support post quantum cryptography extensions. To
fulfil the different requirements expressed by the ISOLDE demonstrators, the CVA6 RTL will
be configurable by enable/disable features.

3.2.1 Support for post quantum cryptography extensions

To support the increased demand for security due to quantum computing threat, support of
post quantum cryptography is a must for the future. Additional instructions will be useful to
support PQC algorithms standardised by NIST.

Current status

Since previous year, RISC-V International is no more primarily considering standardization of
scalar instructions for PQC.

This task addresses Number Theoretic Transform (NTT) which is part of PQC Dilithium algo-
rithm standardized by NIST.

The implementation will be scalar one. The specification of scalar instructions has been com-
pleted. Implementation in CVA6 pipeline is started.

3.2.2 Configurable RTL

The CVA6 RTL configurability is a mean to have cores adapted to the demonstrator needs. It
will be possible to enable/disable and/or configure different features: e.g., privilege modes,
extensions, cache configuration. By disabling some unused features, the resulting area and
power consumption are reduced.

Current status

To manage RTL configurability, TDIS implemented a semi-formal flow that derives various
configuration files and human-readable documentation from a single central specification of a
system configuration (Figure 2).

Each specification is validated against formal and hand-coded consistency rules before gen-
erating the final configuration and documentation files.

The outputs of the flow are:

• an RTL parameter file that controls the CVA6 RTL configuration.

• a human-readable design specification of the instruction set and the CSR registers of
the RTL configuration.

Deliverable D2.2 ISOLDE Page: 9

D2.2 ISOLDE - public 31.10.2024

• a configuration file for the Spike simulator used in step-and-compare simulations of the
given CVA6 configuration.

The flow consists of two stages:

• validation of a system configuration specification against the rules set forth in official
RISC-V specifications. The output of this first stage is a consolidated specification con-
taining reset values and documentation strings. It is also guaranteed as consistent with
the official RISC-V ISA specifications.

• generation of RTL/simulator configuration files and generation of design documentation
files from the consolidated specification. Currently, the CVA6 RTL configurability work
is started, and some features are already made configurable.

Figure 2: RTL Configuration Flow

Specification Representation and Validation

System configurations are described formally and validated using the riscv-config tool

(https://github.com/riscv-software-src/riscv-config/) endorsed by RISC-V International.

Configuration specifications are expressed in Yaml and must comply with document schemas
supplied with riscv-config.

The specification of a system configuration consists of four components:

• an ISA specification that defines the instruction set architecture, the supported privilege
levels, the CSR set, any standard ISA extensions and any implementation-defined
properties defined in the official RISC-V ISA specifications.

• a platform specification that captures the information about memory-mapped CSRs and
execution entry point.

• a debug specification that captures the properties of the debug unit (if present).

• a custom specification that can capture any features outside the scope of RISC-V ISA
specification documents.

Deliverable D2.2 ISOLDE Page: 10

D2.2 ISOLDE - public 31.10.2024

The ISA specification format supports the description of an arbitrary number of harts, thus
enabling the representation of heterogeneous multi-core configurations.

Document schemas of the four specifications provide the sets of valid values and the default
values for all properties that are expressible according to the given schema. The sets of legal
values in the schemas strictly follow the official RISC-V ISA specifications, including the appli-
cable versions of the specification where needed. The default documentation strings of all
properties are an integral part of the schemas.

Each input specification can restrict the sets of valid values and can override the default values
from the schema to match the needs of the system being described. Default documentation
strings can also be overridden to tailor their content to the needs of a configuration.

The riscv-config tool transforms a set of input specifications into a set of consolidated

output specifications in which:

• all properties that were implicitly left at default values in the input specification are ex-
plicit and have a defined value.

• reset values of all CSR registers are defined and guaranteed compliant with the input
specification and the corresponding schema.

• valid value ranges of properties are guaranteed compliant with the input specification
and the corresponding schema.

To validate an input specification, the tool checks the values and value ranges in that specifi-
cation against the corresponding schemas and checks compliance to explicitly coded rules
such as dependences between standard ISA extensions. If any of the checks fail, the nature
of the failure is reported to the user and the tool stops without generating output specifications.

To fully capture RTL configurations used in the ISOLDE project, the original platform specifi-
cation schema of riscv-config was extended to support arbitrary memory maps, including

memory region properties such as idempotence and cachability. The modified riscv-config

tool is maintained in a forked copy of the official repository. It is integrated into the CVA6 re-
pository by means of "vendorization" (see https://opentitan.org/book/util/doc/vendor.html) un-
der https://github.com/openhwgroup/cva6/tree/master/vendor/riscv/riscv-config.

The custom specification component is used to capture micro-architecture properties of system
configuration. While there is a generic support for architectural signals in the corresponding
riscv-config schema, it is expected that new, dedicated schema elements will be needed

to provide a higher-level abstraction of microarchitectural properties. The study of the appro-
priate abstractions is currently under way.

A public example of input and output specifications for a simple CV32A65X system configura-
tion, together with a matching Makefile is available in the CVA6 GitHub repository under
https://github.com/openhwgroup/cva6/tree/master/config/riscv-config.

Generation of design documentation and configuration files

In the ISOLDE project TDIS developed a set of scripts which take the set of consolidated
specifications as input and produce:

• a SystemVerilog RTL parameter file that is an integral part of the CVA6 RTL instantia-
tion.

• a Yaml configuration file that controls the operation of the Spike simulator to reflect the
RTL configuration.

• a design specification document covering all instructions supported (legal) in the cur-
rent RTL configuration.

• a design specification document covering all CSR registers present in the input speci-
fication.

https://opentitan.org/book/util/doc/vendor.html

Deliverable D2.2 ISOLDE Page: 11

D2.2 ISOLDE - public 31.10.2024

Each of these outputs requires a combination of information from several specification compo-
nents. In addition, instruction set documentation uses templates providing a natural language
description for all instructions supported in the RISC-V specifications. These templates can be
tailored to the needs of specific projects. The scripts producing the various kinds of outputs
share a common Yaml front-end library in charge of loading consolidated specifications but
use separate backends, each tailored towards the type of information to be produced.

Current scripts and public examples of the output generated from CV32A65X specifications
mentioned above is available in the CVA6 GitHub repository under https://github.com/open-
hwgroup/cva6/tree/master/config/gen_from_riscv_config/.

3.3 Testing Design Parameters for CVA6 (UZL)

Creation of CVA6 of different multicore architectures by system-on-chip generator tools. For
this purpose, various design parameters are systematically created according to the specifica-
tions of T1.3/T1.4 and compared with each other using various design metrics (computing
power, power consumption, etc.) and the suitable design parameters are identified, targeting
different use cases.

3.3.1 Setup of SoC Generator and CVA6 Configuration

The CVA6 RISC-V Core is embedded in a system-on-chip design, which is generated by spe-

cialized tools (OpenHW Group / OpenPiton). UZL has examined different FPGA target plat-

forms (Digilent Gensys2, AMD/Xilinx VCU118), based on the requirements of the demonstra-

tors. The system-on-chip consists of the CVA6, bus-infrastructure, memory-controller and pe-

ripheral IPs. The evaluation consists of two main parts. First, it focuses on CVA6 RISC-V pro-

cessor alone. Second, it evaluates the CVA6 Core together with the system-on-chip architec-

ture, especially memory controller.

Current status

UZL selected Digilent Gensys2 and AMD/Xilinx VCU118 as the target FPGA platform and
adapted the system-on-chip generator configuration accordingly. The platform setup is com-
pleted which builds the base for the benchmarks of Section 3.3.2. Based on the results of
Section 3.3.2, the design parameters might be extended or updated to achieve better results.

3.3.2 Choice of design parameters and benchmarking

Various design parameters (clock frequency, ISA-Extensions, number of cores) for the CVA6
are chosen and tested according to the specifications of T1.3/T1.4. UZL uses well established
benchmark suites, such as Dhrystone and CoreMark. The benchmarking process includes a
design space exploration of various design metrics (computing power, power consumption,
etc.) and the suitable design parameters are identified for the different use cases.

Current status

UZL currently focuses on CVA6-only benchmarks on the Digilent Gensys2 board building up
a design space, which is further extended by the experiments with system-on-chip benchmarks
and the other FPGA target platform (AMD/Xilinx VCU118).

4 Peripheral and interconnect IP cores
Here, we provide the description of the main IP cores, including their firmware, that compose
the catalogue of components that are usually required to build a System-on-Chip (SoC) suc-

Deliverable D2.2 ISOLDE Page: 12

D2.2 ISOLDE - public 31.10.2024

cessfully. This catalogue contains infrastructure IP cores mainly. Thus, compute power (pro-
cessor IPs) is beyond the scope of it. We have structured the catalogue in two groups: periph-
erals and interconnects.

4.1 Peripherals

4.1.1 GRLIB peripheral IPs (GSL)

GSL will provide the GPL version of the GRLIB IP library to support building the demonstrator
SoCs. Required updates or extensions of the IP cores necessary for the demonstrators will be
assessed in terms of feasibility and handled in support of the demonstrator platforms devel-
oped within ISOLDE project.

Current status

Latest release of the GPL version of GRLIB is available.

4.1.2 Improved L2C-lite (UPV)

GRLIB library from GSL includes a share-level cache module (L2C-lite) licensed as GPL to
improve the performance of the open-source multicore architectures that can be built with this
library. This cache module has an AHB interface as the front-end (to connect the cores) and
supports both AXI and AHB as a back end to interconnect with memory or upper cache levels.

In the context of ISOLDE, the L2C-lite module has been improved to increase the level of
parallelism supported. Thus, increasing the performance of the open-source multicores that
can be built with GRLIB. At the same time, we have also extended the replacement policies of
the L2C-lite module to support cache partitioning. This additional support will benefit those
use-case needing to have time-predictable behaviour since it removes the inter-task interfer-
ences that will otherwise occur in the L2C-lite module.

Current status

Functionality implemented and verified. The modifications are already available in the L2C-lite

module of the SELENE platform (https://gitlab.com/selene-riscv-platform/selene-hardware).

4.1.3 Timer (IFX)

The timer module shall support the following features

1. Watchdog

2. Clock

3. Time interval measurement

4. PWM signal generation

The interface may be alternatively via memory mapped registers or via CSRs or both. In that
sense the timer may be an own IP-module or a RISC-V sub-module, later potentially merged
with existing performance counter functionality.

Memory mapped registers may be accessible via AHB or via APB (decision pending). The
provisioning – e.g. multiplexing – of control signals shall be done outside the timer.

The timer should have several timer channels, each with a size constrained counter, an op-
tional number of same size capture compare units (CCUs) and a control module. Mapping of
counter, CCU and control bit-fields to registers is not yet defined.

https://gitlab.com/selene-riscv-platform/selene-hardware

Deliverable D2.2 ISOLDE Page: 13

D2.2 ISOLDE - public 31.10.2024

Current status

Requirements capture and concept for timer finished. Second version of prototype ready, sim-
ulated and validated on FPGA. Formal verification ongoing.

4.1.4 Interrupt Controller (IFX)

The interrupt controller shall support priorities, priority groups and the passing of the ac-
tive/newly requesting interrupt number to the RISC-V core.

The interface may be alternatively via memory mapped registers or via CSRs or both. In that
sense the timer may be an own IP-module or a RISC-V sub-module, later potentially merged
with RISCV CLIC.

Memory mapped registers may be accessible via AHB or via APB (decision pending). The
provisioning – e.g. multiplexing – of control signals shall be done outside the timer.

The number of interrupts supported – and thus implicitly the maximum number of priorities is
under discussion. Mapping of configuration bit-fields and the interrupt status bitfields to regis-
ters is not yet defined. Direct provisioning of interrupt number to exception handler is in dis-
cussion, whereas the CLIC way of doing is preferred.

Current status

Requirements capture and concept for timer finished. Second version of prototype ready, sim-
ulated and validated on FPGA. Formal verification ongoing.

4.2 Interconnects

4.2.1 Wormhole NoC (UPV)

For SoC designs based on a Network-on-Chip (NoC) we envision a Tile-oriented design ap-
proach. Here, a Tile is an abstraction that holds one or more Intellectual Properties (IPs) and
provides a common access interface and protocol to them. Through the NoC, the components
located at different tiles will exchange messages in a unified manner. These IPs will interface
to the NoC by means of a Network Interface (NI), which will expose different types of signal
interfaces to satisfy the typical connections between two given components, like Initiator and
Target. Thus, the NI will comply with AXI interfaces to connect external IP Cores to the network.
The NoC router will support 2D mesh topologies. Overall, the NoC will provide the next fea-
tures:

• Scalable on-chip architecture.

• Deadlock avoidance guarantee.

• Freedom of data losses.

• Broadcast and point-to-point communication primitives.

• Traffic partitioning.

• Quality of Service.

• High throughput.

Current status

We have completed the design of the architecture of the NI and the NoC Router which is
available at https://github.com/UPV-GOS-NOC/euros2pronoc.The activities for implementing
the AXI4 interface in NI have just recently started.

https://github.com/UPV-GOS-NOC/euros2pronoc

Deliverable D2.2 ISOLDE Page: 14

D2.2 ISOLDE - public 31.10.2024

4.2.2 AXI traffic sniffer (UPV)

To enable traffic monitoring in a wide variety of SoCs, we provide and integrate a hardware
module that monitors the network activity in AXI interconnects. This module is written in VHDL,
and its function is to leverage source information in the network packets to obtain contention
information between sources. Thus, this module tracks the timing contention between the dif-
ferent traffic sources on an AXI network for each given destination.

In some cases, such as traversing a cache, initiator information is obscured on the AXI net-
work, thus making fine-grained contention monitoring impossible. To solve this issue, the AXI
traffic monitor relies on request initiator information propagated using the 4 bits available in the
AXI QoS field.

The contention tracked by this module is propagated with specific interfaces to a timing inter-
ference hardware monitor using the safeSU's CCS signalling mechanism developed by BSC
in the context of WP3.

The AXI4 contention monitoring infrastructure monitors read and write contention by blaming
the head of its respective channel queues for the delay it causes to the tails of the queues. It
can also monitor cross-channel contention when one channel's requests are blocked by an-
other channel's requests being processed.

Current status

This module has been completed and verified. A paper describing its functionality and integra-
tion with the SafeSU from BSC in the NOEL-V based SELENE SoC has been published at
(https://www.sciencedirect.com/science/article/pii/S0167739X24004825).

4.2.3 Context-Aware BUS (CA-BUS) - TRT

The context-aware bus (CA-BUS) extends existing AXI-buses so they can integrate the context
information associated to the requests for their processing by the context-aware performance
monitoring counters (CA-PMCs) developed in WP3.

Furthermore, as part of the CA-BUS development, this work will study the transmission of the
context-aware augmented requests through IPs in the path between buses, like bridges and
caches that can transfer requests between buses.

Figure 3 shows an integration example of the CA-BUS alongside the other related IPs for the
context-aware monitoring developed in WP2 (CA-BUS, CA-CORE) and WP3 (CA-PMC, CA-
PMC-IF). In Figure 3 the CA-BUS BUS enriches the system bus with context-aware information
about the running software.

https://www.sciencedirect.com/science/article/pii/S0167739X24004825

Deliverable D2.2 ISOLDE Page: 15

D2.2 ISOLDE - public 31.10.2024

Figure 3: context-aware monitoring infrastructure

Current status

The current context is stored by the CA-CORE extension (from T2.3) as a specific CSR as part
of the CVA6 CSR Register File. The purpose of the CA-BUS extension is to propagate this
information alongside memory requests.

There are two level of memory requests, first the memory requests that are generated by the
pipeline to the L1 cache subsystem, and second the memory requests that correspond to L1
cache misses and that are sent through the AXI bus toward the memory hierarchy (L2 caches
and memory controllers).

The CA-Bus extension has therefore been implemented as two sub-extensions: The ca-
bus/core extension responsible for forwarding the context information towards the L1 cache
subsystem, and the ca-bus/axi extension transferring the context information alongside the
AXI bus.

CA-BUS/core extension:

A pair of common interfaces dcache_req_i_t and dcache_req_o_t are already defined

in cva6.sv for data request to/from the L1 cache subsystem. We extended this interface with a
cam_context signal.

In the execution stage of the CVA6, the context information is obtained from the CSR register
file as part of the Address Generation Unit of the Load/Store Unit, and transferred to the
cam_context signal as part of both the load unit and the store unit.

CA-BUS/AXI extension:

Deliverable D2.2 ISOLDE Page: 16

D2.2 ISOLDE - public 31.10.2024

Upon a cache miss in the L1 cache subsystem, a memory request is sent alongside the AXI
bus towards the memory controller. The corresponding dcache_request is converted into its
AXI counterpart as part of the AXI adapter module.

We modified the AXI adapter module so that the cam_context is propagated as part of the AXI
user interface (axi_wr_user and axi_rd_user) for write and read requests respectively,

so far avoiding modifying the AXI API.

4.2.4 AHB Bridge (IFX)

The AHB crossbar prioritizes and multiplexes different initiators’ and responders’ read and
write requests. Burst transfer will not be supported. Please note “master” and “slave” has been
widely used, fortunately more and more these terms are replaced. “initiator” and “responder”
are used here instead. As these terms are not fully aligned, we strive for Isolde consistent
names.

Current status

Requirements capture and concept for timer started. Second prototype ready, simulated and
validated on FPGA. Complete formal verification ongoing.

5 Common extension interfaces
In this section we describe the work on extending the processor cores to integration accelera-
tors and support context aware performance counters. A short description on the different
tasks will be provided together with an update on the progress currently made.

5.1 Collaboration on a common coprocessor/accelerator interface

Within the scope of the project, ISOLDE partners together with partners from the TRISTAN
project and OpenHW Group has put effort into updating the Core-V eXtension interface (CV-
X-IF) specification. This has resulted in the release of a ratified version 1.0. This specification
defines a RISC-V extension interface that provides a generalized framework suitable to imple-
ment custom coprocessors and ISA extensions for existing RISC-V processors. It features
independent channels for accelerator-agnostic offloading of instructions and writeback of the
result(s). The ratified CV-X-IF release [RD1] is available at https://github.com/openhw-
group/core-v-xif/releases/tag/v1.0.0.

Both foundational cores, CVA6 and NOEL-V, has been extended to implement version 1.0 of
the CV-X-IF. This enables the use of a common extension interface for tightly coupled accel-
erators. Multiple ISOLDE accelerator development has evaluated and selected to adapt the
processor interface to CV-X-IF. This will simplify the integration of the accelerator with the
processor core in the demonstrator designs.

5.2 RISC-V accelerator interface for RISC-V core (IMT)

We design a tightly coupled accelerator and analyses multiple possibilities for this task. But
after the research we decided to use COREV-Extension-Interface (CV-X-IF). We decided to
use this interface because it is RISC-V standard interface, and it is supported by foundation
cores (CVA6 and NOEL-V). Besides that, this interface allows access to internal registers, this
allows small configuration data to accelerator.

To unload the core from memory operations we decided to use a dedicated AXI interface for
the task. This interface is connected to the central bus and allows direct access to main
memory.

Both interfaces we use are standard. In Figure 4 is presented the internal organization of our
accelerator.

Deliverable D2.2 ISOLDE Page: 17

D2.2 ISOLDE - public 31.10.2024

Figure 4: Internal organization of IMT accelerator

Current status

We defined RISC-V extension for the accelerator. The instructions were added to riscv-gnu-
gcc and tested on riscv-isa-sim.

We planned the design of accelerator and define milestone and deadlines for development.
The work for designed started for an initial version, that will support a reduced number of fea-
tures.

5.3 Memory bank accelerator interface for RISC-V core – XPERI

Figure 5: Memory bank accelerator interface

Deliverable D2.2 ISOLDE Page: 18

D2.2 ISOLDE - public 31.10.2024

The purpose of the AXI to Memory banks bridge is to bypass costly transactions to and from
the system memory. Many operations could be performed by RISC-V accessing directly the
memory banks, without the need to transfer the data through the system memory (Figure 5).

For example, we consider a SoftMax operation that must be applied on the results of a previous
operation. This result resides in the memory banks.

1. Without the bridge processing has the following steps:

a. Use DMA to transfer data to the system memory. Transfers to and from the system

memory can be very expensive operations in clock cycles and power, especially if

an off-chip DDR memory is used.

b. The RISC-V processes the data from the system memory and writes the results

back to the system memory.

c. Data is transferred back to the memory banks using DMA, so the accelerator can

process it further.

2. The optimized approach uses the bridge and requires only two transfers (Memory Banks

→ RISC-V and then RISC-V → Memory Banks), instead of four transfers used previously.

a. The CPU reads data directly from the memory bank and processes it.

b. The CPU writes the results back to the memory banks.

The Bank Bridge allows the system CPU to directly access the memory banks of the AI/ML

accelerator, by mapping the bank’s address space into the processor address space. In the

system the Bridge is an AXI slave, providing one read and one write AXI lite channels.

Figure 6: The AI/ML banks’ addressing structure

The AI/ML Banks store 16 values (pixels), each one on 16 bit at each address. This means

that 256 bits are stored at each bank address. The system AXI bus is 128-bit meaning that two

Deliverable D2.2 ISOLDE Page: 19

D2.2 ISOLDE - public 31.10.2024

AXI transfers are needed to access all 16 values stored at one bank address. This is illustrated

in Figure 6.

Figure 7: Memory bank accelerator interface

Figure 7 shows the system integration of the bridge. Only one bank address space is mapped

into the CPU address space. A configurable bank multiplexer selects which bank is connected

to the CPU. As the Bridge has two independent AXI channels, one for read, one for write, the

bank multiplexer can be configured so that the CPU writes and reads from different banks.

Current status

Specification completed; RTL implemented. Verification ongoing (20%).

5.4 Context-Aware Core Extension (CA-CORE) - TRT

The context-aware core extension (CA-CORE) will upgrade the RISC-V CVA6 core to provide
the context information required for the exploitation of the context-aware performance monitor
counters (CA-PMC) developed in WP3.

The CA-PMCs will enable fine-grained monitoring controlled by the software, typically the OS
or the Hypervisor, which will be capable of programming the CA-PMCs to monitor the incoming
request based on their context. The CA-CORE extension extends the RISC-V CVA6 with the
required mechanisms to define the context of the software currently executing in the core.

The CA-CORE extension adds a dedicated CSR to keep the context of the software currently
executing in the core. The OS or hypervisor will change the value of the context CSR depend-
ing on the running application or VM. The CA-CORE extension uses the value in the CSR
context to associate the context value in the CSR with all the load/store requests that core will
issue. For that purpose, we modify load/store-unit to create requests with the context infor-
mation. These context-aware requests are transmitted through the system with the CA-BUS
(see Section “Peripheral and interconnect IP cores” - CA-BUS) to enable their processing in
the CA-PMCs developed in WP3.

Figure 3 (see section 4.2.3 “Context-Aware BUS (CA-BUS) - TRT”) shows an integration ex-
ample of the CA-CORE alongside the other related IPs for the context-aware monitoring de-
veloped in WP2 (CA-BUS, CA-CORE) and WP3 (CA-PMC, CA-PMC-IF).

Deliverable D2.2 ISOLDE Page: 20

D2.2 ISOLDE - public 31.10.2024

Current status

We implemented the CSR register CSR_CAM at address offset 0x810 and a reset value of
zero as part of the CSR register file in csr_regfile.sv, implementing both the read and write
access to this special context register, as well as providing direct output logic to the context
value.

The context has been parameterized as part of the configuration file, with CAM being the en-
able bit of context availability, and CAMContextWidth indicating the number of bits composing
the context.

Rather than having some dedicated bits in the software context indicating the current OS at
hypervisor level, the current process at system level and the current thread/function at user
level. We are likely in the future to split the context register into several registers so that the
write access could be restricted to the proper level.

5.5 Integration and test of accelerator cores with NOEL-V (GSL)

The NOEL-V processor will be updated to support an extension (co-processor/accelerator)
interface. In the context of the ISOLDE project, standard extension interfaces will be evaluated
(in collaboration with OpenHW group and the TRISTAN project) and finally demonstrated the
integration of the ETHZ vector accelerator developed within WP3 (and potentially other accel-
erators).

During the project the OpenHW group CV-X-IF interface will be evaluated for integration with
NOEL-V. A test implementation will be made to determine if some aspects of the specification
should be updated. We will work towards an updated specification more suitable to be imple-
mented in different processor architecture supporting a variety of accelerators.

The final stage in this development is to integrate the vector accelerator form ETHZ with the
NOEL-V processor and show vector performance improvements.

Current status

Gaisler has implemented the latest CV-X-IF specification (1.0.0) into the NOEL-V processor,
though with some limitations—most notably, the compressed interface is not yet integrated.

Integrating the compressed interface into the NOEL-V presents challenges due to the proces-
sor’s pipeline structure. Specifically, in NOEL-V, inputs to the register file are assigned during
the decode stage. This does not pose a challenge for the issue interface, as the register file
sources rs1 and rs2 are always encoded in the same instruction bits, even for CV-X-IF custom
instructions.

However, the situation becomes more complex with compressed instructions, which do not
carry register file source information. This information only becomes available after the instruc-
tion is decompressed by the compressed interface. To address this limitation, a bubble can be
systematically inserted after the decode stage for illegal compressed instructions, allowing time
for decompression. While this approach resolves the issue, it incurs a one-cycle performance
penalty and increases hardware complexity. For this reason, Gaisler's current strategy is to
implement and verify the CV-X-IF interface without the compressed interface. The compressed
interface will be added once the current implementation is fully functional and tested.

At present, the implementation is in the verification phase. A co-processor supporting the M
extension (for multiplication and division) has been developed, and current efforts are focused
on generating randomized test cases targeting Mul/Div instructions.

Deliverable D2.2 ISOLDE Page: 21

D2.2 ISOLDE - public 31.10.2024

Figure 8: CV-X-IF Interface integrated into NOEL-V

Figure 8 presents a simplified block diagram of the CV-X-IF within the NOEL-V integer unit.
The register access stage implements the issue interface, where a new request is initiated if
the current instruction is illegal. The response from the issue interface is registered along with
the issue_valid signal, and based on these signals, different decisions are made during the
Execute stage.

• In the case that the request is accepted, a register interface transaction begins.

• In the case that the request is rejected, the exception signal is set and propagated to
the next stage.

• If the request from the issue interface is not ready, a bubble (pipeline stall) is inserted
into the next stage until the response is available.

The commit interface resides in the write-back stage, where the instruction is either killed or
committed depending on its valid flag. While the response interface is not depicted in the figure,
when the result is ready and a new transaction begins, the pipeline holds for one cycle, and
the result is written into the register file. This allows the pipeline to continue execution, as long
as there is no dependency on the operands of an instruction routed through the CV-X-IF.

5.6 Common coprocessor interface for CVA6 (TDIS)

The first implementation of the CV-X-IF on CVA6 processor was compliant to version 0.2. It
has been revisited to support CV-X-IF version 1.0. The specification of this version is the out-
come of a joint work with OpenHW Group members and TRISTAN project partners.

The CV-X-IF ratified release is available at https://github.com/openhwgroup/core-v-xif/re-
leases/tag/v1.0.0

Deliverable D2.2 ISOLDE Page: 22

D2.2 ISOLDE - public 31.10.2024

CVA6 modifications will be evaluated during the CV-X-IF specification development to ensure
the needs of the different possible coprocessors (e.g., post quantum cryptography coproces-
sors, vector coprocessor, security coprocessor) will be met.

The CV-X-IF on CVA6 processor will be verified using UVM.

Current status

The CV-X-IF version 1.0 is currently implemented on CVA6 (Figure 9).

Notable parameters of the interface on CVA6 are:

• X_DUALREAD = 0

• X_DUALWRITE = 0

• X_ISSUE_REGISTER_SPLIT = 0

• X_NUM_RS = 2 (default) or 3 (supported)

Figure 9: CV-X-IF interface integrated in CVA6

The compressed interface is implemented in the decode stage. The raw instruction passes
through the compressed decoder and the macro decoder. If it is considered illegal at this point
it is offloaded through the compressed interface. It can be accepted by the coprocessor which

Deliverable D2.2 ISOLDE Page: 23

D2.2 ISOLDE - public 31.10.2024

will give back a 32-bit instruction illegal to the main decoder. In case the coprocessor does not
accept the compressed illegal instruction, the 16-bit instruction will be associated to an “illegal
instruction” exception by the main decoder.

All 32-bit illegal instructions are offload in the issue stage via the issue interface to the copro-
cessor. In the meantime, the CPU will resolve read-after-write and write-after-write dependen-
cies to give the pre-decoded source registers to the register interface. The instruction is ac-
cepted once all required registers are ready, and the 32-bit instruction is legal to the coproces-
sor. The commit interface is coupled to the issue interface (and register interface). All offloaded
instructions are committed to their execution if accepted. Speculation is handled internally in
the CVA6. This means that no issue transaction on the issue interface is speculative and there
is no need to kill them via the commit interface.

Results from the coprocessor are recovered in the execute stage via the result interface.
CV-X-IF instructions have their own writeback bus to the scoreboard making the CV-X-IF in-
terface an independent functional unit.

The CV-X-IF interface can be enabled/disabled via a parameter in the CVA6 configuration.

5.7 XIF for CVA6 and Vector Accelerator (ETHZ)

The current specifications of the CV-X-IF (1.0.0) have never been tested on RISC-V V vector
co-processors. After a first analysis of the possible blockers that would prevent the CV-X-IF to
work with a RISC-V V accelerator (developed by ETHZ within ISOLDE), a full implementation
of the CV-X-IF on CVA6 and a RISC-V V 1.0 coprocessor will be provided together with an
IPC and PPA analysis.

This will allow implementing the CV-X-IF in a WP5 demonstrator if the CV-X-IF interface does
not negatively impact the PPA and IPC metrics of the non-CV-X-IF architecture, and a valuable
feedback of the effects of the CV-X-IF on a RISC-V V architecture, together with what the next
CV-X-IF specifications will need to support in order to provide the required functionality.

Current status

ETHZ has successfully merged the custom interface in CVA6 to have a first working interface

that can act as a baseline during the CV-X-IF evaluation. ETHZ also participated in the meet-

ings for CV-X-IF 1.0.0 ratification, providing a first feedback on the specifications, and working

towards a first version of the CV-X-IF (1.0.0) implementation between CVA6 and the multi-

precision vector coprocessor developed within WP3 (T3.4).

This first version of the architecture with CV-X-IF is currently being streamlined not to impact

the PPA metrics of the architecture.

Moreover, ETHZ will provide feedback on the CV-X-IF to the interested TRISTAN/ISOLDE

partners.

5.8 OS support for WP3 Vector Accelerator (ETHZ)

The CVA6 core supports Linux and a custom accelerator port for the vector coprocessor de-
veloped within WP3 (T3.4) by ETHZ. Nevertheless, when the vector coprocessor is enabled,
CVA6 can execute vector code only in bare-metal mode, limiting the flexibility of the vector
coprocessor.

ETHZ will make the necessary architectural modifications to support an operating system and
the vector coprocessor concurrently, e.g., by enabling MMU address translation for vector
memory operations.

Deliverable D2.2 ISOLDE Page: 24

D2.2 ISOLDE - public 31.10.2024

Current status

ETHZ has almost completed the implementation of an MMU sharing port for the WP3 vector

coprocessor to enable vector code execution on Linux.

6 Software interfaces to general purpose cores

6.1 XNG RISC-V BSP to support new NOEL-V features (FEN)

The XNG (Xtratum Next Generation) RISC-V BSP (Board Support Package) will be updated
to support the new standards of RISC-V architecture implemented by NOEL-V. In the context
of the ISOLDE project, this new XNG RISC-V BSP will also support the new advanced interrupt
architecture (AIA) extension that will be developed inside the scope of this project. This exten-
sion implements two new devices, the Advanced Platform-Level Interrupt Controller (APLIC),
which replaces the old PLIC, and the incoming MSI controller (IMSIC). These devices allow
the support of a new type of interrupts, the message-signalled interrupts (MSIs), and both
controllers will be supported by XNG.

Current status

After the analysis of the requirements of the new features to be supported and the reception
of the NOEL-V bitstream with the AIA extension, the software development has started. In
particular, the first implementations have been focused on supporting the wired interrupts, for
which a bare metal driver for the APLIC has been firstly created. Then, the integration of this
driver in the XNG hypervisor has been started, in order to manage this kind of interrupts directly
at the hypervisor level.

6.2 NOEL-V software tools (GSL)

GSL will update and provide bare-metal and Linux RISC-V tool chains for NOEL-V. Work will
also be performed to extend NOEL-V software support.

Current status

Current versions of the NOEL-V tool chains are available for download.

6.3 System software support (SYSGO)

Test hardware developments; produce open-source hardware demonstrations / device drivers.

Current status

We have set up SYSGO’s embedded Linux ELinOS on top of PikeOS in a RISC-V environ-

ment, and thus demonstrated the feasibility of paravirtualisation of ELinOS running on top of

PikeOS. We have also demonstrated the ability to install the Docker virtualization environment

on top of ELinOS. Moreover, we have configured CVA6 support for PikeOS in the context of

the smart home demonstrator in WP5.

7 Conclusion
The Intermediate report on foundational IP cores deliverable provided intermediate results de-
veloped within WP2 (Open-Source Foundation Cores) of the ISOLDE project, building on the
requirements defined in deliverables D1.3 and D1.4.

First architecture and implementation results are described. For the next period, the focus will
be on completing implementations and on test and verification activities.

A final version of this report will be provided in Deliverable D2.3 to be due in M33.

