

Project: ISOLDE: customizable Instruction Sets and Open Leveraged Designs of
Embedded riscv processors

Reference number: 101112274

Project duration: 01.05.2023 - 30.04.2026

Work Package: WP5: Use Cases and Demonstrators

Deliverable D5.1

Title Description of demonstrators architecture

Type of deliverable: Report

Deadline: 30.04.2024

Creation date: 22.11.2023

Authors: Antonio Sciarappa, LDO
Holger Blasum, SYSGO
Samuel Ardaya-Lieb, CONS
Danut Rotar, CAR
Esther Soriano, FENTISS
Davide Di Ienno, TASI
Cyril Koenig, ETHZ
Wolfgang Ecker, IFAG
Dominik Riemer, BYK
Philipp Zehnder, BYK
Catalin Ciobanu, IMT
Daniele Jahier Pagliari, POLITO
Alessio Burrello, POLITO
Josep Jorba, Rapita Systems, SL
Michael Gautschi, ACP
Maurizio Martina, POLITO
George Suciu, BEIA
Anais Sachian, BEIA
Frank Oppenheimer, OFFIS

Involved partners: LDO, CAR, SYSGO, ACP, CONS, FENTISS, TASI, ETHZ, IFAG, BYK,
IMT, RAPITA, SAL, ACP, POLITO, OFFIS, POLIMI, UNIBO, BEIA

Contacts: Antonio Sciarappa, LDO, antonio.sciarappa@leonardo.com

Reviewers: E4, INTEL, IFX, CAR; ETHZ, LDO

mailto:antonio.sciarappa@leonardo.com

Deliverable D5.1 ISOLDE Page: 2

D5.1 ISOLDE - confidential 30.04.2024

Change Records

ISSUE DATE § CHANGE RECORDS AUTHOR

Issue 1 29/02/2024 Initial draft template Antonio Sciarappa – LDO

Issue 2 14/03/2024 First version All partners

Issue 3 27/03/2024 Second version All partners

Issue 4 18/04/2024 Third version All partners

Issue 5 24/04/2024 Review Antonio Sciarappa – LDO

Issue 6 30/04/2024 Comments solved, deliverable cleaned Antonio Sciarappa – LDO

Issue 7 10/05/2024 Ready for submission Antonio Sciarappa - LDO

Deliverable D5.1 ISOLDE Page: 3

D5.1 ISOLDE - confidential 30.04.2024

Table of Contents
Table of Contents 3

1 Introduction 4

1.1 Executive Summary 4

1.2 Definitions and Acronyms 4

2 Space Demonstrator 7

2.1 Overview of the Demonstrator 7

2.1.1 Multi-spectral image processing 7

2.1.2 Anomaly detection from telemetry data 9

2.2 High-level Architecture 10

2.2.1 Cores 11

2.2.2 Accelerators 11

2.2.3 Software 13

3 Automotive Demonstrator 16

3.1 Overview of the Demonstrator 16

3.2 High-level Architecture 19

3.2.1 Cores 24

3.2.2 Accelerators 24

3.2.3 Software 25

4 Smart Home Demonstrator 26

4.1 Overview of the Demonstrator 26

4.2 High-level Architecture 26

4.2.1 Cores 27

4.2.2 Accelerators 30

4.2.3 Software 30

5 Cellular IoT Demonstrator 33

5.1 Overview of the Demonstrator 33

5.2 High-level Architecture 33

5.2.2 Communication Subsystem 35

5.2.3 Software 36

5.3 Validation and Testing 36

6 Conclusions 38

7 References 39

8 Annex 40

Deliverable D5.1 ISOLDE Page: 4

D5.1 ISOLDE - confidential 30.04.2024

1 Introduction

1.1 Executive Summary

This Deliverable reports the proposed architectures of the four Demonstrators (Space, Auto-
motive, Smart Home, Cellular IoT) in four separate sections, as well as providing a more de-
tailed description of the use case applications. A consolidated version of the Demonstrator
requirements is instead provided in Deliverable D1.3, written at the same time. All partners
involved in WP5 contributed to this Deliverable.

1.2 Definitions and Acronyms

Abbreviation Description

AC Alternating Current

AES Advanced Encryption Standard

AI Artificial Intelligence

ALU Arithmetic and Logic Unit

AOT Ahead-Of-Time

API Application Programming Interface

AR Auto Regressive

ARM Advanced RISC Machine

ASIC Application-Specific Integrated Circuits

AXI Advanced Extensible Interface

BLAS Basic Linear Algebra Subprograms

BLDC Brushless DC

CAE Convolutional Autoencoders

cIoT cellular IoT demonstrator

CLIC Core Local Interrupt Controller

CNN Convolutional Neural Network

CPU Central Processing Unit

DC Direct Current

DDR Double Data Rate

DFE Digital Front-End

DL Deep Learning

DMA Direct Memory Access

DNN Deep Neural Network

DRAM Dynamic Random Access Memory

DSP Digital Signal Processing

EO Earth Observation

Deliverable D5.1 ISOLDE Page: 5

D5.1 ISOLDE - confidential 30.04.2024

Abbreviation Description

FDIR Fault Detection Isolation and Recovery

FOC Field Oriented Control

FPGA Field Programmable Gate Array

FPU Floating-Point Unit

GEMM-Ops General Matrix-Matrix Operations

HMAC Hash Message Authentication Code

HPC High-Performance Computing

HW Hardware

IoT Internet of Things

IP Intellectual Property

IQ In-phase and Quadrature

IR Infrared

ISA Instruction Set Architecture

KMAC KECCAK Message Authentication Code

KEM Key Encapsulation Mechanism

LCA Loosely-Coupled Accelerator

LLC Last Level Cache

LLVM Low Level Virtual Machine

LSTM Long-Short-Term-Memory

LTE Long Term Evolution

ML Machine Learning

MMU Memory Management Unit

NAS Neural Architecture Search

NN Neural Network

OOL Out-Of-Limits

OS Operating System

PCA Principal Component Analysis

PLIC Platform Local Interrupt Controller

PMC Performance Monitoring Counters

PMSM Permanent Magnet Synchronous Motor

PQC Post-Quantum Cryptography

PULP Parallel Ultra Low Power

RAM Random Access Memory

RF Radio Frequency

Deliverable D5.1 ISOLDE Page: 6

D5.1 ISOLDE - confidential 30.04.2024

Abbreviation Description

RISC Reduced Instruction Set Computer

RNN Recurrent Neural Network

ROM Read-Only Memory

RoT Root of Trust

RTL Register Transfer Logic

RVS Rapita Verification Suite

SHA Seccure Hashing Algorithm

SIMD Single Instruction Multiple Data

SME Smart Energy Management

SMGW Smart Meter GateWay

SoC System-on-Chip

SSH Secure SHell

SW Software

TCA Tightly-Coupled Accelerator

TPE Tensor Processing Engine

VLSU Vector Load/Store Unit

VRF Vector Register File

WCET Worst-Case Execution Time

XREG EXchange REgister

Deliverable D5.1 ISOLDE Page: 7

D5.1 ISOLDE - confidential 30.04.2024

2 Space Demonstrator

2.1 Overview of the Demonstrator

Nowadays, due to the limited computational capabilities of modern satellites, the data collected
in space is not, if not minimally, used directly on-board but is sent to Earth and then processed
and consumed. Nevertheless, having a higher computational power in orbit would enable a
whole series of new capabilities, from automated debris avoidance to real-time system moni-
toring.

The purpose of the Space Demonstrator is to evaluate the potentialities of RISC-V high per-
formance cores with dedicated accelerators for intensive computations on satellites. In partic-
ular, two scenarios will be addressed:

• Multi-spectral image processing

• Anomaly detection from telemetry data

2.1.1 Multi-spectral image processing

One of the proposed use cases examines the use of satellite imagery for forest fire detection.
Generally, performing processing on data from multispectral sensors is prohibitively expensive
for onboard analysis. Indeed, datasets used for Earth observation (EO) are based on pre-pro-
cessed imagery including at least basic operations such as orthorectification, co-registration
and calibration, as well as filtering to reduce noise and distortion. Of course, each of these
operations adds to the computational burden that makes it more difficult to apply Machine
Learning (ML) / Deep Learning (DL) models that are usually trained on such processed images.

One possible solution involves simplifying the processing so that DL networks can be trained
on this data. For this reason, the use case starts with a dataset whose processing is compatible
with onboard operations along with the subsequent processing needed for forest fire reporting.

To overcome this problem, the demonstrator proposed here will use, as starting point, signifi-

cantly rougher data that require only an equalization and a compression operated on-board to

enable the processing of onboard-acquired data through a DL model optimized for efficient

operation on a RISC-V based processor. Actually, the data that will be used for the demonstra-

tor, after the equalization and the compression are sent to the ground station to produce

metadata, including geographical information. However, for the scope of the demonstrator, this

ancillary information is used only for the labelling part to locate the target events (wildfire) into

the raw images. After the labelling and the training of the model, this second step including the

downlink is not more required before the inference of the model. This dataset aims to promote

the development of energy-efficient pre-processing algorithms and artificial intelligence models

for applications aboard satellites. Despite being conceived for the detection of thermal hotspots

events, the proposed approach is widely applicable for the design of any classification/detec-

tion tasks on Sentinel-2 raw data.

Dataset

The dataset identified for this purpose is THRawS (https://arxiv.org/abs/2305.11891). This da-
taset includes satellite data containing temperature hotspots, such as fires and volcanic erup-
tions, from around the world. These raw data are obtained after a lightweight “coarse spatial
co-registration” and georeferencing. This process is fast but provides sufficiently accurate spa-
tial registration to locate events on L0 data after detection on Level-1C (L1C) data. The dataset
includes more than 100 samples, including fires, volcanic eruptions, and event-free volcanic
areas, to enable hot event detection and general classification applications.

https://arxiv.org/abs/2305.11891

Deliverable D5.1 ISOLDE Page: 8

D5.1 ISOLDE - confidential 30.04.2024

Model

The models intended to be used for satellite hotspot recognition are algorithms already widely
used for hyper- and multispectral image processing. Among the most established are convolu-
tional models, which analyze images using convolutional filters. A more appropriate variant for
hyper-spectral image processing is given by models using 3D convolutions, which add to the
spatial dimension the dimension related to the bands that make up the spectral hypercube.

Unlike traditional 2D convolutions, which operate on individual spectral bands separately, 3D
convolutions can capture spectral and spatial features jointly, providing a more comprehensive
representation of the hyperspectral data. By considering the entire spectral cube as a 3D vol-
ume, 3D convolutional layers can learn spatial and spectral patterns that are not easily detect-
able. The proposed Convolutional block comprises a 3D convolution layer with a kernel size of
3 × 3 × 3 followed by another 3D convolution layer with a kernel size of 3 × 1 × 1 and stride 2
× 1× 1 to reduce the spectral dimension. The convolutional block used in this architecture is
shown in Figure 1 below. The number of filters of the first layer is set to a number n while for
the second and third convolutional layers, this value increases by 3/4 of the previous value.

Figure 1: 3d convolutional layer block

Convolutional networks are not the only ones that can be used for forest fire detection. Fully
connected networks can also possibly be explored even if the domain of the images is not what
they are used to processing by their nature. This is because by their nature they would process
each pixel without looking at the spatial context around it, which generally provides useful in-
formation to improve classification accuracy.

Models Parameters

The parameters of these models are the weights that effectively set the domain of discrimina-
tion between the event you want to identify and the rest of the zones that instead represent the
uninteresting background. The more parameters a model has, the more complex the function
that can increase its accuracy. This discussion, however, should not be unrelated to the dimen-
sion of the dataset, which currently has about fifty fires that can be used to drive and validate
the model. However, each event contains a hundred pixels covering the forest parts affected
by a fire. To this basic data, new data can be obtained with augmentation techniques to in-
crease the generalization of the model. It is expected that a simple baseline could have a num-
ber of parameters in the tens of thousands but with the possibility of being able to increase this
number to a few hundred thousand parameters.

Software

The software component focuses on the implementation of a deep learning model tailored for
the unique constraints of onboard processing. Specifically, the model is designed to operate

Deliverable D5.1 ISOLDE Page: 9

D5.1 ISOLDE - confidential 30.04.2024

seamlessly with limited computational resources while directly applying to Raw Sentinel-2 data,
bypassing the conventional pre-processing step.

2.1.2 Anomaly detection from telemetry data

Another of the proposed use cases for the Space demonstrator regards Satellite Health mon-
itoring and Telemetry Analysis, with a focus on anomaly detection. This use case falls inside
the Fault Detection Isolation and Recovery (FDIR) domain, in particular in the Fault Identifica-
tion part. In fact, the ML-based methods described in this section are used to detect anomalous
behavior with respect to nominal spacecraft operation. The development of ML-based methods
is indeed carried out with the objective to overcome limitations of traditional methods, which
relies heavily on domain expert knowledge and the automation is usually limited to Out-Of-
Limits (OOL) checks. A high-level architecture for raw signal to anomaly detection with ML
methods is represented in Figure 2. TASI has accumulated years of experience in this area,
and it is now focusing on consolidating these developments, as well as deploying them on HW.
One key aspect is indeed to analyze telemetry data directly on-board and RISC-V processors
fall into this scenario.

Figure 2: Signal processing and score computation chain for Anomaly detection applications from [1]

Dataset

The dataset used to train the methods discussed below is based on telemetry data from the
on-board Attitude Control Subsystem of a satellite. The anomaly is actually simulated by faking
a failure of the monitored components.

The preprocessing may differ slightly between different methods, but it usually includes the
following tasks:

• Data polishing: only nominal data should reside in the dataset,

• Windowing: the ML models are fed with a frame of predefined length of the time series,

• Normalization: data is normalized between 0 and 1.

Models

For the purpose of this demonstrator, the methods considered are the following:

• Principal Component Analysis (PCA), that is a linear dimensionality reduction tech-
nique, which is indeed able to linearly transform the input into a reduced representation
such that its principal components express the maximum amount of variance.

• Auto Regressive (AR), that is a stochastic method largely used to predict future values
of a time series based on its previous values.

• Convolutional Autoencoders (CAE), a DL method featuring Encoder-Decoder architec-
ture. The encoder is used to encode the input data into a latent space, with a reduced
dimension, and the decoder task is to reconstruct the original data. The encoder and
the decoder are usually designed to be symmetric and in this case are built using 1D
convolutional layers, as the input data is composed by telemetry time series data.

• Long-Short-Term-Memory (LSTM), another DL method, in this case a Recurrent Neural
Network (RNN), which is able to predict future samples of the time series.

Deliverable D5.1 ISOLDE Page: 10

D5.1 ISOLDE - confidential 30.04.2024

An example for an Encoder-Decoder architecture for anomaly detection, valid for both PCA
and CAE, is reported in Figure 3.

Figure 3: Encoder-Decoder architecture typical of Autoencoders, including the detail of the computa-

tion of an anomaly score based on the reconstruction accuracy

Software

All software implementation is focused on the ML and DL methods. All the methods are imple-
mented in Python, in particular the PCA implementation is based on the one available on scikit-
learn and the Neural Networks (NNs) (i.e. CAE and LSTM) are implemented using PyTorch. A
low level (C) implementation is available, but it is worth noting that it was developed for a
different Hardware (HW) architecture. The methods feature different characteristics, e.g. com-
putational cost, memory footprint as well as scalability, and it is envisaged, especially for NNs,
to exploit HW acceleration.

2.2 High-level Architecture

The proposed architecture is based on the open-source Cheshire template
(https://github.com/pulp-platform/cheshire) with several additions and improvements. We en-
vision a system divided in several domains, some of which are adapted from the Cheshire
template (black), others are contributions in the ISOLDE project (blue):

• Host domain, composed of a host processor based on CVA6 + data/instruction caches,

an L2 cache, a DMA controller, and a boot ROM;

• Peripheral domain, composed of peripherals such as JTAG, I2C, QSPI to connect with

external devices;

• System-level AXI crossbar, which is used to connect all domains together;

• Root-of-Trust (UNIBO), a RoT unit based on OpenTitan

https://github.com/lowRISC/opentitan providing facilities for secure computing, such as

secure boot, cryptographic primitives;

• Accelerating cluster 0 (PULP + TPE), based on the PULP cluster

https://github.com/pulp-platform/pulp_cluster integrating a Tensor Processing Engine

(UNIBO) along with multiple DSPs based on the RISC-V instruction set architecture;

• BIKE (POLIMI) to provide post-quantum cryptography primitives support;

• Parallel Computing Accelerator (POLITO) to provide accelerated approximate compu-

ting capabilities.

Each domain can communicate with the Linux-capable CVA6 host through the AXI system-
level crossbar. A scheme of the proposed architecture can be found in Figure 4.

https://github.com/pulp-platform/cheshire
https://github.com/lowRISC/opentitan
https://github.com/pulp-platform/pulp_cluster

Deliverable D5.1 ISOLDE Page: 11

D5.1 ISOLDE - confidential 30.04.2024

Figure 4: Space Demonstrator architecture proposal with details of cores and accelerators

2.2.1 Cores

Considering the applications characteristics and the requirements discussed in D1.1 and D1.3,
the Space demonstrator will be based on a single 64-bit Linux-capable CVA6 host core. In
addition, other items developed in WP2 will be considered for integration.

Context-Aware Bus and Core extensions (TRT)

CVA6 core and system bus will be extended with execution context information, in order to
allow context-aware Performance Monitoring Counters. Such extensions will enhance current
PMCs and enable more efficient safety verification and monitoring of the system, allowing the
system to define and select only the events that need to be collected.

2.2.2 Accelerators

As far as accelerators are concerned, the following items developed in WP3 will be the main

ones considered for integration in the Space demonstrator:

Context-Aware PMC and PMC Interface (TRT)

Advanced Performance Monitoring Counters will be developed for CVA6, with the capability of
filtering the events based on a context (e.g. VM or process executing in the host core) on which
the event was generated; in addition, an addressable interface will be developed to provide
this access.

Deliverable D5.1 ISOLDE Page: 12

D5.1 ISOLDE - confidential 30.04.2024

Parallel computing accelerator (POLITO)

Figure 5: Architecture of the Parallel Computing Accelerator

As shown in Figure 5 above, the proposed parallel computing accelerator relies on an approx-
imate processing cluster architecture. The cluster is made of a programmable number of ap-
proximate processing elements, each of which contains a register file and an Arithmetic and
Logic Unit (ALU). The accelerator can be configured via different parameters. Part of these
parameters (such as the maximum number of processing elements and the maximum preci-
sion) are configured at design time, while other parameters (such as the approximation level)
can be set at the run-time. The accelerator is connected to the CVA6 system architecture
through an AXI interface and it processes a subset of ALU operations in approximate mode.

Tensor Processing Engine (UNIBO)

Figure 6: Architecture of the Tensor Processing Engine

The Tensor Processing Engine (TPE) depicted in Figure 6 is a low-power specialized acceler-
ator conceived for multi-precision floating-point General Matrix-Matrix Operations (GEMM-
Ops) acceleration, supporting FP16, as well as hybrid FP8 formats, with {sign, exponent, man-
tissa}=({1,4,3}, {1,5,2}). The TPE is integrated within a PULP cluster for cooperative computa-
tion together with the cluster’s DSPs.

Deliverable D5.1 ISOLDE Page: 13

D5.1 ISOLDE - confidential 30.04.2024

Root-of-Trust Unit (UNIBO)

Figure 7: Architecture of the Root-of-Trust unit

The Root-of-Trust provided by UNIBO within ISOLDE is based on lowRISC's OpenTitan, the

first open-source RISC-V based RoT design. It includes acceleration units for cryptographic

hashing (SHA-256 and SHA-3), message authentication (HMAC, KMAC) and symmetric en-

cryption (AES); a schematic representation of the unit is provided in Figure 7. UNIBO's RoT is

meant to be a ready-to-integrate silicon IP able to act as a RoT.

BIKE accelerator (POLIMI)

This accelerator provides hardware support for the key generation, encapsulation, and decap-
sulation primitives of the key encapsulation mechanism BIKE, thus adding post-quantum cryp-
tography capabilities to the system. The accelerator is connected to the CVA6 system archi-
tecture through an AXI interface to exchange commands, related to the execution of the vari-
ous KEM primitives, and data, corresponding to the public-private keypairs, plaintexts, and
ciphertexts used or produced by the three KEM primitives.

Additional accelerators that may be considered are the following ones:

Parallel Scratchpad Memory (IMT)

The parallel scratchpad memory employs a multibank implementation to provide high-speed
access to data with regular dense access patterns (e.g., lines, columns, 2D matrices, diago-
nals). This may accelerate the execution of the memory intensive portions of the applications
by reducing the data transfers to the off-chip memory. The Scratchpad Memory architecture is
described in detail in Deliverable D3.1.

SIMD/Vector Accelerator (IMT)

The SIMD/Vector accelerator can exploit the available Data Level Parallelism in the application
and process multiple data elements in parallel. The SIMD/Vector Accelerator architecture is
described in detail in Deliverable D3.1.

2.2.3 Software

The following software tools developed in WP4 are planned to be used in the context of the
Space demonstrator.

Deliverable D5.1 ISOLDE Page: 14

D5.1 ISOLDE - confidential 30.04.2024

Optimized DNN Software Kernels (POLITO)

POLITO focused on gathering specifications from the space demonstrator and initiating the
creation of kernels, aimed at enhancing coordination between the CVA6 cluster and the vector
accelerator proposed in the main demonstrator architecture. These efforts are directly applied
to the optimization of the execution of the end-to-end Deep Neural Networks (DNNs) for forest
fire detection using satellite data. Enabling the on-board processing and hardware exploitation
throughout kernel designing, the system effectively minimizes the need to transmit vast
amounts of data back to Earth, significantly enhancing the efficiency and responsiveness of
satellite operations.

DNN Optimization Toolchain (POLITO)

POLITO will exploit its advancements in Neural Architecture Search (NAS) to optimize the
architecture of forest fire detection CNNs, aiming to reduce their size and complexity for effi-
cient on-chip deployment. The integration of quantization within NAS further enables the con-
version of the network to integer types, compatible with the hardware of the space demonstra-
tor. The integration of this step is crucial for the space demonstrator to allow the hardware to
run more complex AI models more efficiently, thereby reducing power consumption while im-
proving the accuracy of the on-board detection, trying to match the ones that can be reached
on HPC systems.

System-level Simulation of Extra-functional Properties (POLITO)

POLITO also contributes to the demonstrator by providing a SystemC-based simulation frame-
work able to model (parts of) the complete system, focusing on non-functional properties and,
in particular, on power consumption aspects. The framework supports the simulation of differ-
ent sub-systems including sensors, energy storage (batteries) and energy sources (e.g. PV
panels). In the initial part of the project, the activities of this work item focused on identifying
ways to integrate the SystemC-based simulation with software execution running on CVA6.

Optimizing Power/Performance: Best CVA6 Configurations (Silvaco)

Silvaco will optimize algorithm power/performance trade-off on the CVA6 architecture. Focus-
ing on benchmarks such as matmul, we'll identify the best configurations within Thales con-
straints parameters ranges, balancing power consumption and computational efficiency.
Through simulation and data generation based on RTL and GL simulations, we aim to under-
stand CVA6 behavior and develop machine learning models for predicting power and perfor-
mance. The anticipated outcome is a suite of best-fit configurations for the CVA6 processor,
which are expected to enable efficient processing for space applications while remaining within
the energy constraints of such missions. These configurations will be derived from simulations,
with the understanding that implementation on an FPGA board falls outside the scope of the
limited efforts Silvaco has dedicated to the demonstrator.

Inference timing analysis (Rapita Systems)

Rapita Systems will provide an identification of interference channels and a study of main crit-
ical configuration settings having an impact on timing interference, based on the sharing of
memory resources (memory, buses) between the CVA6 core and accelerators in the system
on chip. Support on RVS RapiTime tool for the actual target for measurement of relevant hard-
ware metrics and Worst-Case Execution Time (WCET) in contention scenarios will be provided.
Furthermore, support for running this tool over XNG hypervisor is expected.

XNG Hypervisor virtualization support (FENTISS)

FENTISS contributes to the demonstrator by supporting the evaluation of the XtratuM Next
Generation (XNG) hypervisor over the CVA-6 core in the context of mixed critical applications,

Deliverable D5.1 ISOLDE Page: 15

D5.1 ISOLDE - confidential 30.04.2024

e.g. situations with one critical application (e.g. telemetry / telecommand) and one non-critical
application (e.g. the AI / ML models developed during the project) running together on different
partitions; in such cases, the non-critical application will be using virtualized accelerators. The
possibility of having multiple applications running on a partitioned accelerator may be evalu-
ated at a later stage, depending on the behavior of the applications developed and the com-
plexity of the accelerators themselves.

PikeOS for CVA6 (SYSGO)

Based on previous experience with other RISC-V cores, SYSGO will work towards providing
CVA6 support for PikeOS. Based on its availability, the functionalities and capabilities of
PikeOS on CVA6 will tentatively be evaluated in the context of the Space demonstrator.

Compiler Support for Approximate Computing (POLIMI)

POLIMI will apply precision tuning to the space demonstrator application, where appropriate,
to achieve better latency/energy efficiency and reduce resource usage on the target architec-
ture.

The compiler will target the general-purpose accelerator cluster, although we will also explore
the feasibility of targeting dedicated components – this depends on the code generation pipe-
lines employed for the dedicated accelerators and their compatibility with the LLVM compiler
system upon which POLIMI’s precision tuning components are deployed.

Compiler Support for WCET estimation and optimization (POLIMI)

POLIMI will apply novel techniques inside the LLVM compiler to estimate the WCET during the
compilation flow and properly exploit the compiler optimizations to reduce the WCET of the
application. The resulting tool will be tentatively exploited for the RISC-V architecture and the
software applications of the space demonstrator.

Deliverable D5.1 ISOLDE Page: 16

D5.1 ISOLDE - confidential 30.04.2024

3 Automotive Demonstrator

3.1 Overview of the Demonstrator

Eye detection (see example in Figure 8) is an essential feature for driver monitoring systems
acting as a base functionality for other algorithms like attention or drowsiness detection.

Figure 8: An example of eye detection

Multiple methods for eye detection exist. The machine learning based methods involve a man-
ual labeling process in order to generate training and testing datasets. This use case presents
an eye detection algorithm based on convolutional neural networks trained using automatically
generated ground truth data and proves that we can train very good machine learning models
using automatically generated labels. Such an approach reduces the effort needed for manual
labeling and data preprocessing and it is applicable in image processing.

The algorithm and the relative processing engines will be implemented on an FPGA based
setup and will be validated using laboratory and real in-car environment setup.

Algorithms will be fed with images from cameras with IR image sensors and illumination and
the results can be tracked /analyzed on a PC, Intel Core i7-10700, 16 GB, Intel UHD graphics
630, 512 GB, M.2 PCIe as depicted in Figure 9 and Figure 10.

Deliverable D5.1 ISOLDE Page: 17

D5.1 ISOLDE - confidential 30.04.2024

Figure 9: Block diagram of the demonstrator setup

Figure 10: Possible position of the camera in a car

In addition, Electronic Motor control is an essential feature that is demonstrated in Isolde. As
electronic motors consume a substantial amount of energy worldwide, this is also a contribu-
tion to worldwide CO2 reduction.

Deliverable D5.1 ISOLDE Page: 18

D5.1 ISOLDE - confidential 30.04.2024

Figure 11: Potential Hardware Demonstrator

The deliverable is an ASIC (or as backup an FPGA) interfacing the motor electronic. The de-
monstrator is from automotive domain and can be used on a slightly modified way in Industrial
applications. Figure 11 shows a potential setup of the demonstrator.

As the demonstrator is close to a non RISC-V product, there is a realistic chance that the
demonstrator will be enhanced to a motor control product. A second benefit is that hand-written
software exists and efforts for migrating software can be analysed. The RISC-V has special
instructions that boost the performance for DSP and AI applications in the range of High-Per-
formance-Computers.

There are different kinds of motors, which can be classified by the way they are constructed.
A BLDC (Brushless DC) motor is an electric motor, which uses a permanent magnet in the
rotor and an electronic controller to control the electric field made by the stator. In contrast to
traditional DC motors, BLDC motors have no brushes, and the commutation is done electron-
ically i.e. there is no mechanical commutation connection between rotor and commutator.
Thus, BLDC motors are more reliable, and are often used when high efficiency, long lifetime,
and a precise speed control are needed.

Figure 12: BLDC motor

Figure 12 shows the structure of a BLDC motor. The stators, consisting of a series of coils in a
circular pattern, are situated on the walls of the motor and a permanent magnet, which serves
as a rotor, is in the middle. The control is done electronically with an interaction of stator and
rotor. A magnetic field is created by applying electric current to the stator coils. This interacts
with the permanent magnet causing it to rotate. Timing and intensity of the current to the stator

Deliverable D5.1 ISOLDE Page: 19

D5.1 ISOLDE - confidential 30.04.2024

coils are managed by the electronic controller. It is driven so that the magnetic field is always
aligned with the permanent magnets in the rotor. This leads to an efficient and smooth rotation.
Depending on the number of windings, a BLDC motor can be 1-phased, 2-phased or 3-phased.

Field Oriented Control (FOC) is a popular control algorithm for a 3-phase motor. The GenerIoT
automatically built software should also be applied for this use case.

It is mostly used for PMSM (Permanent Magnet Synchronous Motor) and BLDC motors. For
this control technique the Clarke-Park Transformation is used to transform the 3-phase AC
voltage U and current I-signals into a two-phase reference frame. This decouples the magnetic
flux and torque components of the motor and allows these to be controlled independently. This
leads to better control of the torque response.

Figure 13: FOC block-diagram

Figure 13 shows the structure of the FOC, which consists of mainly three parts, the control, the
transformations and the mechanical part including the BLDC motor. From the voltage control-
ling the BLDC motor Ua, Ub, Uc the currents Ia, Ib and Ic are calculated, which are then used as
the input of the Clarke-Transformation. This transformation simplifies the system by converting
the three-phase current into a two-phase current Iα and Iβ.

These signals with addition of the motor angle φ are the input of the Park-Transformation, which
rotates the received two-phase current into a stationary reference which are called direct cur-
rent Id and quadrature current Iq and thus separates them into the components that represent
the torque and the magnetic field. The values of these signals build a difference with the refer-
ence signals Iqref and Idref and are fed to the current controllers. Iqref is determined by the speed
controller which contains a PI controller from the error e between the reference speed ωref and
the actual speed ω. Idref is often 0. The two current controllers output the direct voltage Ud and
the quadratic voltage Uq, which is then transformed back to a three-phase signal with the In-
verse Park-Transformation and the Inverse Clarke-Transformation. The immediate control of
the stators is done in hardware thus the control algorithm needs to be executed in 100 Hz – 10
khz range, depending on the application.

3.2 High-level Architecture

Automotive applications can be decomposed in:

• Compute-intensive modules: modulate flow of data, lots of number crunching and few

decisions -e.g., machine learning inference, digital signal processing, cryptography.

• Regular modules: modulate flow of instructions, little number crunching and a lot of

decisions.

Deliverable D5.1 ISOLDE Page: 20

D5.1 ISOLDE - confidential 30.04.2024

In order to improve performance, compute-intensive module should be executed on a dedi-

cated hardware accelerator. From this perspective, there are (at least) two options for hard-

ware acceleration: hardware units that autonomously execute entire computational sub-graphs

and instruction acceleration units, sometimes referred to as coprocessors, that take over com-

plex instructions and thus are directly sequenced by the core instruction stream. Coprocessors

imply less communication overhead, yet they can be efficiently exploited only within instruction

set architectures (ISA) that allow extensions dedicated to particular computation domains [2].

In general, each selected hardware accelerator comes with its own hardware software inter-

face (HW-SW Intf.) - see Figure 14. This approach leads to a heterogeneous hardware setup

(General Purpose Processors, hardware accelerators, network to interconnect them) which

can be a challenge to be programmed, due to the fragmented HW-SW Intf. A hardware Façade

build on top of this heterogeneous accelerators set can make the programmer’s life less chal-

lenging. Benefits of this approach:

• SW First! - hardware is customized for the application needs (i.e. the selected hardware

accelerator(s) shall match the required performance/watt)

• A single hardware - software interface shall ease the programming of the system.

• Synergies at hardware level can be acquired, enforcing better performance/watt.

The above is known as Application-Specific Instruction-set Processor delivers high perfor-

mance and energy efficiency by tailoring a processor architecture and instruction set to the

specific requirements of a particular application domain.

 (a) (b)

Figure 14: Heterogeneous computing: (a) Fragmented HW-SW interface (b) Unified HW-SW interface

The HW-SW Interface of a computing system is known as Instruction Set Architecture (ISA)

Instruction Set Architecture (ISA) defines:

• Instruction set and instruction encoding.

• Architectural state (register set, control & status register, etc.)

• Memory specification: addressing, alignment.

• Virtual Memory Architecture, etc.

The Microarchitecture (µarch) is the implementation of the instruction set architecture (ISA) in

a particular general-purpose processor. A compiler will translate the high-level language into

a flow of instructions defined by the ISA. An ISA is essentially a compiler target.

Deliverable D5.1 ISOLDE Page: 21

D5.1 ISOLDE - confidential 30.04.2024

 (a) (b)

Figure 15: Instruction Set Architecture: (a) SW stack (b) AIDA

CAR introduces AIDA - Application-specific RISC-V Hardware Accelerator with the following

design goals:

• Performance, measured using throughput (operations per second) and latency (time to

complete a task)

• Flexibility, the degree to which the accelerator can cope with variations of the applica-

tion

The hardware Façade in this particular case, will be RISC-V RV32I with custom extensions.
The custom extensions are tailored to make the hardware accelerator(s) programmable from
the RISC-V software ecosystem. To accommodate the ML model complexity, a ML compiler
shall translate the model’s execution graph into a flow of RISC-V like instructions. Software
tool-chain will be able to translate ONNX machine learning models/C++ applications into binary
code to be executed by AIDA Tool-chain development effort will be concentrated in:

• ONNX Front-end

• llc RISC-V backend

while leveraging all the optimizations already available in LLVM framework.

Accelerator Coupling

[3] evaluated the following design options when coupling hardware accelerators:

• Tightly-Coupled Accelerators (TCAs) - The core shares key resources with the hard-

ware accelerators (register file, memory-management unit (MMU) and L1 data cache),

and thus stalls until the accelerator completes execution.

• Loosely-Coupled Accelerators (LCAs) - hardware accelerators are located outside the

CPU core.

[3] concluded that LCAs offer better performance due to the possibility to use private memory

blocks tailored to the accelerator needs. The private memory blocks (scratchpad memory) offer

better data locality and therefore LCAs have an enhanced throughput over the TCAs. From

the software perspective, memory mapped LCAs don’t require to modify the CPU’s ISA. The

core can via load/store instructions configure and trigger the execution of a complete applica-

Deliverable D5.1 ISOLDE Page: 22

D5.1 ISOLDE - confidential 30.04.2024

tion kernel, for instance a Fast-Fourier-Transform or a convolution. In the following, it is as-

sumed that there is a hardware accelerator which implements convolution according to the

description from [4].

Loosely Coupled Accelerator – Convolution

Figure 16: Loosely Coupled Accelerator on AXI bus

In the C++ application, it is assumed that S_AXI_CTRL port is mapped at 0x8000000.

From the software perspective, a simple C/C++ application, conv2d_api.cpp, is listed in the

Annex.

Invoking the compiler,

clang -cc1 -S

-triple riscv32-unknown-elf -target-feature +v

-target-abi ilp32d -O3 -o conv2d_api.cpp

will generate a flow of 25 instructions, also available in Annex.

Tight Coupled Accelerator – Convolution

A coprocessor [5] shall support the following instruction types:

• load

• store

• processing instructions

The load and store instructions enable information to pass between:

• core file registers and coprocessor file registers

Deliverable D5.1 ISOLDE Page: 23

D5.1 ISOLDE - confidential 30.04.2024

• memory and coprocessor

Any hardware accelerator which can be loosely-coupled to the core, can be "converted" into a

coprocessor. From the software perspective, the core’s ISA needs to be modified. To access

the hardware, a build-in function was added to clang compiler, __builtin_onnx_conv2df32, see

Annex for details. Invoking the compiler,

clang -cc1 -S

-triple riscv32-unknown-elf -target-feature +v

-target-abi ilp32d -O3 -o conv2d.cpp

will generate a flow of 13 instructions, 52 percent lesser than the LCA variant.

Future work

Depending on the hardware accelerator configuration complexity, it can be that integrating it

as a coprocessor reduces the number of instructions. In the example above, the number of

instructions (for equivalent C++ applications) was reduced from 25 to 13 instructions. Never-

theless, the tight coupling complicates the hardware integration. On the other hand, the RISC-

V core shall offer just a thin hardware layer on top of the accelerator, therefore the core pipeline

can be a simplified one. An option worth investigating would be to have a parallel pipeline for

the custom RISC-V instruction.

Figure 17: Tight Coupled Accelerator

CV-X-IF can be a candidate for the control interface.

In ISOLDE, we would like to integrate the hardware accelerator and the RISC-V core as a”

MOLEN Polymorphic Processor”. In ISOLDE the “reconfigurable processor” part is the hard-

ware accelerator which is configurable but not reprogrammable (i.e. accelerator’s structure is

Deliverable D5.1 ISOLDE Page: 24

D5.1 ISOLDE - confidential 30.04.2024

frozen). As such, in the polymorphic ISA, the set instructions are dropped completely, and the

exchange registers (XREGs) shall keep configuration and input/out parameters of the hard-

ware accelerator. The “Arbiter” from [6] Fig.16 can be viewed as an additional stage in the

RISC-V pipeline. Based on observation from [3] scratchpad memory should be added to in-

crease the throughput.

Figure 18: SoC block-diagram implementing Figure 13 FOC block diagram

Figure 18 shows high level block diagram for implementing the FOC.

The SoC will interface with the environment via SPI and will have a debug interface (not
shown). The processor of the embedded CPU subsystem shall be a 32bit core. A bus bridge
shall bridge different peripheral and memory accesses.

The preferred FPGA board for the integration of the demonstrator the Xilinx Versal VMK180
(but may be also an ARTY) for the following reasons:

IFX is experienced using Xilinx FPGA boards and Vivado toolchain. Prototyping behavior with
an FPGA is an advanced methodology to be applied in the demonstrator.

For similar reasons the ASIC shall be implemented in an Infineon 130nm technology.

3.2.1 Cores

In the HW Facade we aim to modify the core pipeline, therefore we selected core will probably
be NOEL-V.

Stretch goal: benchmark the several HW Facade implementations (listed in priority order):

• NOEL-V

• CVA6

• In-house HLS RV32I core (RISC-V core implemented in C++)

• In-house generated RV32IX Core

3.2.2 Accelerators

We will analyze as many as possible the use of such accelerators provided by the following
partners:

• FotoNation (Tobii): AI/ML accelerator IP.

• UNIBO: Tensor Processing Unit.

Deliverable D5.1 ISOLDE Page: 25

D5.1 ISOLDE - confidential 30.04.2024

• POLITO: Hardware accelerators for parallel processing.

• TUI: vector/SIMD units.

• SAL: Event-Based / Sparse convolution accelerator.

• SAL: Resource efficient PQC.

• IMT: SIMD/Vector Accelerator

• IAI: Closely coupled AI inference accelerator with Intrinsic support

• OFFIS: Time Contract Monitoring Co-Processor (TCCP)

3.2.3 Software

We will modify the following compilers:

Procedural compiler: The LLVM Compiler Infrastructure, gcc

ML compiler: onnx-mlir, tensor flow light micro (or TVM)

https://llvm.org/
http://onnx.ai/onnx-mlir/Documentation.html

Deliverable D5.1 ISOLDE Page: 26

D5.1 ISOLDE - confidential 30.04.2024

4 Smart Home Demonstrator

4.1 Overview of the Demonstrator

As described in D1.1, the goal is to show the usability of RISC-V application platforms for an

SME in the energy sector. Figure 19 describes the setting for smart home energy management

demonstrator:

Figure 19: Setup of the Demonstrator

The application is an end consumer house network in which various electrical producers (e.g.,
PV on the roof and/or balcony module, wind turbine, etc.) and consumers (e.g., heat pump,
heating rod, charging column for electric car, washing machine, light, etc.) communicate with
the Leaflet device (see the Figure above). The goal is to optimize the local use of the generated
energy using prognosis, e.g., the charging column battery, operation of the heat pump, are
operated when electricity is provided from your own PV system. The decisions / optimizations
are made here by a HEMS (Home Energy Management System), in our case based on
OpenEMS (https://openems.io/), which is located on the Leaflet device developed by Con-
solinno. Since it is not cost-effective to strive for complete self -sufficiency in the event of a
home network, there is still a connection to the public power grid via the supply system opera-
tor. In detail, the house network is separated from the supply system operator by a smart meter
gateway (SMGW), which also accesses the counter. The SMGW communicates (e.g., via IEC
61850 protocol) with that of the Leaflet device, which also has a CLS unit (Controllable Local
System).

The HEMS unit in the figure operates on the knowledge of all connected devices in the system,
while the CLS unit only must know the aggregated value of the generation and consumption
in order to communicate, whether fed or consumed, and in what amount this happens.

4.2 High-level Architecture

As described in D1.1 and D1.3, we target three implementation stacks, one on i.MX8 (ARM),
two on RISC-V CVA-6, preferably multi-core. Concerning the two RISC-V CVA-6 stacks, one
is a pure open source demonstrator that can be made fully available (e.g., on Github) as sam-
ple payload and the other CVA-6 stack is a demonstrator using a special kind of small code-
size hypervisor (separation kernel, https://en.wikipedia.org/wiki/Separation_kernel), which is
good at providing strong isolation of execution environments, and controlled execution be-
tween them. The separation kernel provided in this use case is called PikeOS
(https://www.pikeos.com), and amongst others, has been evaluated against the security stand-
ard Common Criteria EAL5 (https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/Be-
triebssysteme/1146.html). The three targeted implementation stacks are shown in Figure 20.

https://openems.io/
https://en.wikipedia.org/wiki/Separation_kernel
https://www.pikeos.com/
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/Betriebssysteme/1146.html
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/Betriebssysteme/1146.html

Deliverable D5.1 ISOLDE Page: 27

D5.1 ISOLDE - confidential 30.04.2024

Figure 20: Targeted implementations of the Demonstrator

4.2.1 Cores

For the open-source demonstrator, we break it down to a core-agnostic RISC-V multicore
qemu demonstration, and a demonstration on a single-core CVA6 demonstration (current ver-
sion taken from CVA-6 git in September 2023).

For the portable-baseline architecture, the demonstration uses ARM i.MX8 processors.

For the hypervisor demonstration it is again planned to use RISC-V CVA6.

CVA6 Cores

The scope of the default CVA-6 IP is described in https://cva6.readthedocs.io/en/lat-
est/01_cva6_user/Introduction.html#scope-of-the-ip and is depicted in Figure 21, taken from
the link indicated.

https://cva6.readthedocs.io/en/latest/01_cva6_user/Introduction.html#scope-of-the-ip
https://cva6.readthedocs.io/en/latest/01_cva6_user/Introduction.html#scope-of-the-ip

Deliverable D5.1 ISOLDE Page: 28

D5.1 ISOLDE - confidential 30.04.2024

Figure 21: Scope of the CVA6 IP

Deliverable D5.1 ISOLDE Page: 29

D5.1 ISOLDE - confidential 30.04.2024

Figure 22: Block diagram of the used CVA6 IP (from https://github.com/openhwgroup/cva6)

ARM i.MX8 SoC

For the intentionally non-RISC-V baseline demonstrator of the energy management system
we use an ARM i.MX8 processor.

Figure 23: ARM i.MX8 block diagram as in https://www.nxp.com/products/processors-and-microcon-
trollers/arm-processors/i-mx-applications-processors/i-mx-8-applications-processors/i-mx-8-family-
arm-cortex-a53-cortex-a72-virtualization-vision-3d-graphics-4k-video:i.MX8

https://github.com/openhwgroup/cva6
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-applications-processors/i-mx-8-family-arm-cortex-a53-cortex-a72-virtualization-vision-3d-graphics-4k-video:i.MX8
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-applications-processors/i-mx-8-family-arm-cortex-a53-cortex-a72-virtualization-vision-3d-graphics-4k-video:i.MX8
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-applications-processors/i-mx-8-family-arm-cortex-a53-cortex-a72-virtualization-vision-3d-graphics-4k-video:i.MX8

Deliverable D5.1 ISOLDE Page: 30

D5.1 ISOLDE - confidential 30.04.2024

4.2.2 Accelerators

If available and if the integration is feasible, we want to make use of AI acceleration. This is an

option, not a hard requirement.

4.2.3 Software

The software stack for the three sub-demonstrations is depicted in Figure 24.

Figure 24: Software stack for the three sub-demonstrators

In general, we use a stack consisting of Linux, Java, OpenEMS as well as a version with vir-

tualization consisting of PikeOS, Linux, Java, and OpenEMS.

For the open-source demonstrator in particular we have planned a configuration, which con-
sists of the Debian packages for a base system, and OpenJDK-22 and its dependencies (e.g.
libraries, packages beginning with “lib:”). A detailed list is given below:

adduser, adwaita-icon-theme, alsa-topology-conf, alsa-ucm-conf, apt, apt-utils, at-spi2-com-
mon, at-spi2-core, base-files, base-passwd, bash, bsdutils, ca-certificates, ca-certificates-
java, coreutils, cpio, cron, cron-daemon-common, dash, dbus, dbus-bin, dbus-daemon, dbus-
session-bus-common, dbus-system-bus-common, dbus-user-session, dconf-gsettings-
backend:riscv64, dconf-service, debconf, debconf-i18n, debian-archive-keyring, debian-
ports-archive-keyring, debianutils, diffutils, dmidecode, dmsetup, dpkg, e2fsprogs, fdisk,
findutils, fontconfig, fontconfig-config, fonts-dejavu-core, fonts-dejavu-extra, fonts-dejavu-
mono, gcc-13-base:riscv64, gpgv, grep, gsettings-desktop-schemas, gtk-update-icon-cache,
gzip, hicolor-icon-theme, hostname, ifupdown, init, init-system-helpers, initramfs-tools, ini-
tramfs-tools-core, iproute2, iputils-ping, java-common, klibc-utils, kmod, less, libacl1:riscv64,
libapparmor1:riscv64, libapt-pkg6.0:riscv64, libargon2-1:riscv64, libasound2:riscv64, liba-
sound2-data, libatk-bridge2.0-0:riscv64, libatk-wrapper-java, libatk-wrapper-java-jni:riscv64,
libatk1.0-0:riscv64, libatomic1:riscv64, libatspi2.0-0:riscv64, libattr1:riscv64, libaudit-common,
libaudit1:riscv64, libavahi-client3:riscv64, libavahi-common-data:riscv64, libavahi-com-
mon3:riscv64, libblkid1:riscv64, libbpf1:riscv64, libbrotli1:riscv64, libbsd0:riscv64, libbz2-
1.0:riscv64, libc-bin, libc6:riscv64, libcairo-gobject2:riscv64, libcairo2:riscv64, libcap-
ng0:riscv64, libcap2:riscv64, libcap2-bin, libcbor0.10:riscv64, libcom-err2:riscv64, lib-
crypt1:riscv64, libcryptsetup12:riscv64, libcups2:riscv64, libdatrie1:riscv64, libdb5.3:riscv64,
libdbus-1-3:riscv64, libdconf1:riscv64, libdebconfclient0:riscv64, libdeflate0:riscv64,
libdevmapper1.02.1:riscv64, libdrm-amdgpu1:riscv64, libdrm-common, libdrm-nou-
veau2:riscv64, libdrm-radeon1:riscv64, libdrm2:riscv64, libedit2:riscv64, libelf1:riscv64, libex-
pat1:riscv64, libext2fs2:riscv64, libfdisk1:riscv64, libffi8:riscv64, libfido2-1:riscv64, libfile-find-
rule-perl, libfontconfig1:riscv64, libfreetype6:riscv64, libfribidi0:riscv64, libgail-com-
mon:riscv64, libgail18:riscv64, libgcc-s1:riscv64, libgcrypt20:riscv64, libgdbm-com-
pat4:riscv64, libgdbm6:riscv64, libgdk-pixbuf-2.0-0:riscv64, libgdk-pixbuf2.0-bin, libgdk-
pixbuf2.0-common, libgif7:riscv64, libgl1:riscv64, libgl1-mesa-dri:riscv64, libglapi-
mesa:riscv64, libglib2.0-0:riscv64, libglib2.0-data, libglvnd0:riscv64, libglx-mesa0:riscv64, lib-
glx0:riscv64, libgmp10:riscv64, libgnutls30:riscv64, libgpg-error0:riscv64, libgraphite2-
3:riscv64, libgssapi-krb5-2:riscv64, libgtk2.0-0:riscv64, libgtk2.0-bin, libgtk2.0-common,
libharfbuzz0b:riscv64, libhogweed6:riscv64, libice-dev:riscv64, libice6:riscv64, li-
bicu72:riscv64, libidn2-0:riscv64, libjansson4:riscv64, libjbig0:riscv64, libjpeg62-turbo:riscv64,

Deliverable D5.1 ISOLDE Page: 31

D5.1 ISOLDE - confidential 30.04.2024

libjson-c5:riscv64, libk5crypto3:riscv64, libkeyutils1:riscv64, libklibc:riscv64, libkmod2:riscv64,
libkrb5-3:riscv64, libkrb5support0:riscv64, liblcms2-2:riscv64, liblerc4:riscv64,
libllvm17:riscv64, liblocale-gettext-perl, liblz4-1:riscv64, liblzma5:riscv64, libmd0:riscv64,
libmnl0:riscv64, libmount1:riscv64, libncursesw6:riscv64, libnettle8:riscv64, lib-
newt0.52:riscv64, libnftables1:riscv64, libnftnl11:riscv64, libnsl2:riscv64, libnspr4:riscv64,
libnss3:riscv64, libnumber-compare-perl, libp11-kit0:riscv64, libpam-modules:riscv64, libpam-
modules-bin, libpam-runtime, libpam-systemd:riscv64, libpam0g:riscv64, libpango-1.0-
0:riscv64, libpangocairo-1.0-0:riscv64, libpangoft2-1.0-0:riscv64, libpcre2-8-0:riscv64,
libpcsclite1:riscv64, libperl5.38:riscv64, libpixman-1-0:riscv64, libpng16-16:riscv64,
libpopt0:riscv64, libproc2-0:riscv64, libpsl5:riscv64, libpthread-stubs0-dev:riscv64, libpy-
thon3-stdlib:riscv64, libpython3.11-minimal:riscv64, libpython3.11-stdlib:riscv64, libread-
line8:riscv64, librsvg2-2:riscv64, librsvg2-common:riscv64, libseccomp2:riscv64, libseli-
nux1:riscv64, libsemanage-common, libsemanage2:riscv64, libsensors-config, libsen-
sors5:riscv64, libsepol2:riscv64, libsharpyuv0:riscv64, libslang2:riscv64, libsm-dev:riscv64,
libsm6:riscv64, libsmartcols1:riscv64, libsqlite3-0:riscv64, libss2:riscv64, libssl3:riscv64,
libstdc++6:riscv64, libsystemd-shared:riscv64, libsystemd0:riscv64, libtasn1-6:riscv64,
libtext-charwidth-perl:riscv64, libtext-glob-perl, libtext-iconv-perl:riscv64, libtext-wrapi18n-perl,
libthai-data, libthai0:riscv64, libtiff6:riscv64, libtinfo6:riscv64, libtirpc-common,
libtirpc3:riscv64, libudev1:riscv64, libunistring5:riscv64, libuuid1:riscv64, libvulkan1:riscv64,
libwayland-client0:riscv64, libwebp7:riscv64, libwrap0:riscv64, libx11-6:riscv64, libx11-data,
libx11-dev:riscv64, libx11-xcb1:riscv64, libxau-dev:riscv64, libxau6:riscv64, libxaw7:riscv64,
libxcb-dri2-0:riscv64, libxcb-dri3-0:riscv64, libxcb-glx0:riscv64, libxcb-present0:riscv64,
libxcb-randr0:riscv64, libxcb-render0:riscv64, libxcb-shape0:riscv64, libxcb-shm0:riscv64,
libxcb-sync1:riscv64, libxcb-xfixes0:riscv64, libxcb1:riscv64, libxcb1-dev:riscv64, libxcompo-
site1:riscv64, libxcursor1:riscv64, libxdamage1:riscv64, libxdmcp-dev:riscv64,
libxdmcp6:riscv64, libxext6:riscv64, libxfixes3:riscv64, libxft2:riscv64, libxi6:riscv64, libx-
inerama1:riscv64, libxkbfile1:riscv64, libxml2:riscv64, libxmu6:riscv64, libxmuu1:riscv64,
libxpm4:riscv64, libxrandr2:riscv64, libxrender1:riscv64, libxshmfence1:riscv64, libxt-
dev:riscv64, libxt6:riscv64, libxtables12:riscv64, libxtst6:riscv64, libxv1:riscv64,
libxxf86dga1:riscv64, libxxf86vm1:riscv64, libxxhash0:riscv64, libz3-4:riscv64, libz-
std1:riscv64, linux-base, linux-image-6.6.11-riscv64, linux-image-riscv64, login, logrotate,
logsave, luit, mawk, media-types, mesa-vulkan-drivers:riscv64, mount, nano, ncurses-base,
ncurses-bin, netbase, nftables, openjdk-22-jdk:riscv64, openjdk-22-jdk-headless:riscv64,
openjdk-22-jre:riscv64, openjdk-22-jre-headless:riscv64, openssh-client, openssh-server,
openssh-sftp-server, openssl, passwd, perl, perl-base, perl-modules-5.38, procps, publicsuf-
fix, python3, python3-minimal, python3.11, python3.11-minimal, readline-common, rsync,
runit-helper, sed, sensible-utils, shared-mime-info, strace, systemd, systemd-dev, systemd-
sysv, sysvinit-utils, tar, tasksel, tasksel-data, tzdata, u-boot-menu, ucf, udev, unzip, usr-is-
merged, usrmerge, util-linux, wget, whiptail, x11-common, x11-utils, x11proto-dev, xdg-user-
dirs, xorg-sgml-doctools, xtrans-dev, zlib1g:riscv64

In addition, the smart home software stack includes a demonstration of several Apache

StreamPipes extensions for IoT analytics developed for the smart home stack, showcasing the

technical foundations of the edge client developed within WP4. This software consists of a

lightweight microservice (written in either Java or Go), which can be deployed on resource-

constrained hardware. The service includes adapters for various smart home protocols (e.g.,

BACNet, KNX, Modbus TCP/RTU/ASCII). Adapters can be instantiated from a centralized sys-

tem using the Apache StreamPipes Connect library. This system allows to select one of the

registered devices and directly deploys an adapter configuration to the edge node. Data gath-

ered by the edge node is forwarded to the central core (which provides data management,

persistence and analytics operators) over MQTT or NATS. This ensures continuous data

streaming from resource-constrained edge devices to a central analytics interface. The com-

plete software stack thus includes one or more extension services which are deployed directly

Deliverable D5.1 ISOLDE Page: 32

D5.1 ISOLDE - confidential 30.04.2024

on edge nodes, the core as the central management and orchestration component, a time-

series database and a message broker for persistence and live streaming, edge-centric. The

system can also be used to integrate machine learning models using one of the integrated

client libraries and the Python-based model zoo to integrate online machine learning models

(e.g., using the RIVER framework), or reusing interchangeable model formats such as ONNX.

The main extensions developed within ISOLDE are the lightweight edge service (using AOT

compilation for fast startup), the adapter implementation to connect with smart home protocols

and the management extension to remotely instantiate and manage adapters from a central

location at registered edge nodes.

Deliverable D5.1 ISOLDE Page: 33

D5.1 ISOLDE - confidential 30.04.2024

5 Cellular IoT Demonstrator

5.1 Overview of the Demonstrator

The cellular IoT demonstrator (cIoT) aims to combine 5G cellular IoT standards for wireless
communication with embedded HPC to build a modem that can connect to the internet through
the cellular network while offering enough computing capabilities for embedded applications.
The target markets of the proposed system are wearables, industrial monitoring, environmental
sensing and monitoring, smart cities, and connectivity in automotive.

The embedded HPC part will be tackled with a 64-bit RISC-V system based on CVA6 that has
been enhanced by “Ara": a powerful vector engine with a reconfigurable number of lanes. The
vector capabilities of this embedded HPC subsystem will be particularly suited for compute-
intensive workloads from signal processing or machine learning domains allowing IoT systems
to be built that can complete demanding cognitive tasks enabled through recent AI solutions
as well as complex control workloads at the edge, reducing the demand for energy costly com-
munication and reducing the latency for control tasks. The goal is to build a programmable
general-purpose host subsystem with a cellular network specialized domain which will be es-
sential for building smart devices with reduced energy consumption (10 years of battery life)
at low cost (single SoC integration).

Figure 25: cIoT demonstrator overview: embedded HPC subsystem for capable of complex data pro-
cessing tasks, coupled with a communication subsystem for cellular IoT connectivity

5.2 High-level Architecture

The general-purpose subsystem will be based on the Linux-capable CVA6. Alongside with
CVA6, the SoC features multiple peripherals. A core local interrupt controller (CLIC) and plat-
form local interrupt controller (PLIC) for timers and interrupts. A UART controller to support a
serial console, a SPI controller to read a Linux image on a NOR flash, and a JTAG debug port
to help bring up the system. All these peripheral IPs are chosen from open-source implemen-
tations. At this stage, the demonstration system will be realized on a Xilinx AMD based FPGA
platform. For this implementation, a proprietary Xilinx AMD DDR4 controller will be used to
access up to 4GB of shared RAM for the whole system. All the external chips (NOR & DRAM)
will be taken from the chosen Xilinx AMD development board.

The embedded HPC and communication subsystem will work alone to allow for multiple clock
domains and dedicated bus bandwidth on each side. Both parts of the system will be coupled
to each other through a fully-digital double data-rate serial link. This scalable communication

Deliverable D5.1 ISOLDE Page: 34

D5.1 ISOLDE - confidential 30.04.2024

interface is necessary to allow the demonstrator to be scaled into two different FPGA chips in
case the system's area requires it.

Figure 26: High-level overview of the IoT demonstrator

5.2.1 Embedded HPC Subsystem

The embedded HPC subsystem features Ara as a vector coprocessor. In order to provide su-
perior performance when compared to a regular scalar core, Ara operates simultaneously on
multiple 64-bit lanes in a Single Instruction Multiple Data (SIMD) fashion. Each lane contains
its own Floating-Point Unit (FPU) and Vector Register File (VRF) chunk, which buffers the
vector elements loaded from the DRAM via a Vector Load/Store Unit (VLSU). To avoid com-
putational resource under-utilization, the AXI4 memory port of the VLSU scales linearly with
the number of lanes (W = 4*Lanes [Byte]).

One of the challenges of integrating Ara and CVA6 in the same architecture is synchronizing
and ordering the scalar and vector memory operations performed by the two independent sca-
lar and vector LSUs. For example, to ensure cache coherence, a data-cache invalidation filter
scans Ara’s memory interface and, in the case of vector stores, invalidates the corresponding
CVA6 data-cache lines.

To enable OS support in Ara, CVA6 MMU will be shared with the vector coprocessor to allow
for address translation for vector memory operations. If the demonstrator runs in bare-metal
mode, this feature can be disabled.

Since CVA6 and Ara’s load/store units operate on different data widths, the embedded HPC
subsystem will require two buses to operate. The 64-bit bus connects CVA6 with the periph-
erals, a small scratchpad memory used to load microcode, the serial link bridging to the com-
munication domains and a Direct Memory Access (DMA) engine that can be used to fetch or
push data to it. The W-bit bus contains only the DRAM accessible through a Last Level Cache
(LLC). Any manager on the 64-bit bus can also access the DRAM through a data-width resizer.
Both buses implement AXI4, but also the ATOP extensions defined in AXI5. All the elements
cited above are shown above in Figure 26.

Deliverable D5.1 ISOLDE Page: 35

D5.1 ISOLDE - confidential 30.04.2024

5.2.2 Communication Subsystem

Figure 27: Communication Subsystem: Application domain, modem domain, RF-transceiver

The communication subsystem implements everything that is necessary to establish a cellular
connection over LTE Cat1Bis or LTE NR. The subsystem consists of the following main blocks:

• Application domain: Hosts a set of peripherals (SPI, I2C, UART), local RAM, DMAs,

and several processor cores that run higher level protocol software for Cat1Bis, and

LTE NR and manage communication with the embedded HPC cluster through a serial

link

• Modem domain: Hosts local RAM, several accelerators for signal processing tasks,

and processor cores that run lower-level protocol software and control the different

accelerators as well as the RF-transceiver

• RF transceiver: hosts the DFE, data interface and RF controller that allow to send

and receive IQ samples

In addition, there is non-volatile storage for the binaries, and several interconnects.

5.2.2.1 FPGA prototype of the communication subsystem

The communication subsystem has been mapped to an FPGA for prototyping, verification and
software development. A big board, the Xilinx Versal VMK180, has been chosen as a devel-
opment board for the communication subsystem, because of its programmable logic size that
allows it to map the full hardware on a single FPGA. On the prototyping platform, the non-
volatile storage is emulated with DDR memory and the application and modem domain are
mapped on to the programmable logic of the FPGA.

The RF-transceiver, as well as two antennas are connected to the FPGA over an adapter
board that is connected over an FMC connector. In addition, there is a small extension board
for USB UART.

Debug and trace functionality is supported through an internal JTAG master, and trace receiver
IP that are implemented on the programmable logic and can be controlled over the processing
system that runs Linux. Those two IPs can later be replaced with external debugger and tracer
hardware once the chip has been fabricated.

Deliverable D5.1 ISOLDE Page: 36

D5.1 ISOLDE - confidential 30.04.2024

Figure 28: Image of the Xilinx Versal VMK180 board with the RF transceiver, two antennas, and an
extension board for usb UART

5.2.3 Software

The presence of a Linux-capable core makes porting existing software and libraries to this SoC
easy. In our demonstrator, CVA6 will run the version 6.1.22 Linux, along with the Busybox
tools and executables. This includes for instance a Secure Shell (SSH) server. From Linux,
our demonstrator will access the communication subsystem address space via a dedicated
kernel module.

The communication subsystem will run a real time operating system on its processing system.
The cluster will use the little kernel OS (https://github.com/littlekernel/lk). The protocol software
as well as the lower-level software for the hardware accelerator control is under development.

Finally, devices within the Internet of Things, such as cars or mobile phones, can rely on the
performances of Ara to accelerate compute intensive tasks like Deep Learning inference and
signal processing. Without on-chip processing, the system would rely on cloud offloading which
requires additional wireless communication thus power consumption. To demonstrate on-chip
processing capabilities, we will benchmark floating point intensive operations on Ara. The op-
eration will be selected from the BLAS (Basic Linear Algebra Subprograms) problems. BLAS
[7] Is a specification implemented by several libraries, such as OpenBLAS [8]. It allows hard-
ware vendors to provide a platform optimized implementation of each subprogram. Later, these
can be called from higher level libraries like PyTorch [9] using a common API (Application
Programming Interface).

5.3 Validation and Testing

The individual components of the embedded HPC and Communication subsystems are veri-
fied with stand-alone testbenches with standard rtl simulation tools. The subsystems are then
verified with integration tests through a top level testbench to make sure that all components
are properly connected to each other.

Performance in terms of speed will be primarily measured on the prototyping platform through
performance counters that count the number of cycles, instructions, and stalls. This is espe-
cially important for the communication subsystem which has hard-real time constraints that

https://github.com/littlekernel/lk

Deliverable D5.1 ISOLDE Page: 37

D5.1 ISOLDE - confidential 30.04.2024

need to be fulfilled under any circumstances. To achieve the maximum throughput of the cel-
lular protocol, which is 10mbps, the interface between the two domains must achieve the same
throughput in both directions.

Deliverable D5.1 ISOLDE Page: 38

D5.1 ISOLDE - confidential 30.04.2024

6 Conclusions
In this Deliverable we described the work done during the first year in the context of WP5.

The initial work focused on identifying and selecting the relevant IPs to be considered for each

individual demonstrator, start discussing on possible integrability problems, propose one (or

more) initial version of the demonstrator architecture, and define how and why the individual

components should be used.

The Deliverable summarized the progress done for each Demonstrator (Section 2 for Space,

Section 3 for Automotive, Section 4 for Smart Home, Section 5 for Cellular IoT). While the

initial architectures proposed here may be revised at a later stage, this document already pro-

vides a clear overview and directions for future developments and can be taken as reference

for the IPs development done in the context of WP2, WP3 and WP4.

Deliverable D5.1 ISOLDE Page: 39

D5.1 ISOLDE - confidential 30.04.2024

7 References
[1] Ciancarelli, C. et al. (2023). Innovative ML-based Methods for Automated On-

board Spacecraft Anomaly Detection. In: Ieracitano, C., Mammone, N., Di

Clemente, M., Mahmud, M., Furfaro, R., Morabito, F.C. (eds) The Use of Ar-

tificial Intelligence for Space Applications. AII 2022. Studies in Computational

Intelligence, vol 1088. Springer, Cham. https://doi.org/10.1007/978-3-031-

25755-1_14

[2] Cheikh, A., Sordillo, S., Mastrandrea, A., Menichelli, F., Scotti, G., Olivieri,

M.: Klessydra-t: Designing vector coprocessors for multithreaded edge-com-

puting cores. IEEE Micro 41(2), 64–71 (2021).

https://doi.org/10.1109/MM.2021.3050962

[3] Cota, E.G., Mantovani, P., Di Guglielmo, G., Carloni, L.P.: An analysis of ac-

celerator coupling in heterogeneous architectures. In: 2015 52nd

ACM/EDAC/IEEE Design Automation Conference (DAC). pp. 1–6 (2015).

https://doi.org/10.1145/2744769.2744794

[4] ONNX: ONNX 1.17.0 documentation. https://onnx.ai/onnx/opera-
tors/onnx__Conv.html (2024), accessed on April 4, 2024

[5] ARM: ARM1176JZ-S Technical Reference Manual r0p7. https://devel-

oper.arm.com/documentation/ ddi0333/h/coprocessor-interface/coprocessor-

pipeline/ coprocessor-instructions (2024), accessed on April 4, 2024

[6] Vassiliadis, S., Wong, S., Gaydadjiev, G., Bertels, K., Kuzmanov, G., Pan-

ainte, E.: The molen polymorphic processor. IEEE Transactions on Comput-

ers 53(11), 1363–1375 (2004). https://doi.org/10.1109/TC.2004.104

[7] Blackford, L.S. et al., 2002. An updated set of basic linear algebra subpro-

grams (BLAS). ACM Transactions on Mathematical Software, 28(2), pp.135–

151.

[8] http://www.openblas.net/

[9] Adam Paszke et al.: Automatic differentiation in PyTorch. NIPS (2017)

https://doi.org/10.1145/2744769.2744794
https://doi.org/10.1109/TC.2004.104
http://www.openblas.net/

Deliverable D5.1 ISOLDE Page: 40

D5.1 ISOLDE - confidential 30.04.2024

8 Annex
8.1 conv2d_api.cpp

typedef int v4xi32 __attribute__ ((vector_size (4 * sizeof (int))));

// accelerator ’s register map

const int reg_base = 0 x8000000 ;

const int reg_y = reg_base + 4;

const int reg_y_shape = reg_y + 4;

const int reg_x = reg_y_shape + 4*4;

const int reg_x_shape = reg_x + 4;

const int reg_w = reg_x_shape + 4*4;

const int reg_w_shape = reg_w + 4;

const int reg_pad = reg_w_shape + 4*4;

const int reg_str_dil = reg_pad + 4*4;

inline v4xi32 __conti_onnx_conv2df32 (float * y

, float * x

, v4xi32 x_shape

, float * w

, v4xi32 w_shape

, v4xi32 pad

, v4xi32 str_dil){

int * cfg = (int *) reg_y ;

* cfg = reinterpret_cast < int >(y);

// input

cfg = (int *) reg_x ;

* cfg = reinterpret_cast < int >(x);

cfg = (int *) reg_x_shape ;

* cfg = reinterpret_cast < int >(& x_shape);

// weight

cfg = (int *) reg_w ;

* cfg = reinterpret_cast < int >(w);

cfg = (int *) reg_w_shape ;

* cfg = reinterpret_cast < int >(& w_shape);

// padding

cfg = (int *) reg_pad ;

* cfg = reinterpret_cast < int >(& pad);

// striding dilation

cfg = (int *) reg_str_dil ;

* cfg = reinterpret_cast < int >(& str_dil);

// start the operation

cfg = (int *) reg_base ;

* cfg = 0 xabc ;

v4xi32 y_shape ={1 ,2 ,3 ,4};

return y_shape ; }

Deliverable D5.1 ISOLDE Page: 41

D5.1 ISOLDE - confidential 30.04.2024

extern float x [1][1][5][5];

extern float w [1][1][3][3];

extern float y [1][1][3][3];

int main (){

v4xi32 x_shape ={1 ,1 ,5 ,5};

v4xi32 w_shape ={1 ,1 ,3 ,3};

v4xi32 pad ={0 ,0 ,0 ,0}; // padding

v4xi32 str_dil ={1 ,1 ,0 ,0}; // stride_dilation

v4xi32 y_shape ;

y_shape = __conti_onnx_conv2df32 ((float *) y

,(float *) x

, x_shape

,(float *) w

, w_shape

, pad

, str_dil);

return 0;

}

Generated instructions flow:

1 addi sp , sp , -64

2 auipc a0 , % got_pcrel_hi (y)

3 lw a0 , % pcrel_lo (. Lpcrel_hi0)(a0)

4 lui a1 , 32768

5 auipc a2 , % got_pcrel_hi (x)

6 lw a2 , % pcrel_lo (. Lpcrel_hi1)(a2)

7 sw a0 , 4(a1)

8 auipc a0 , % got_pcrel_hi (w)

9 lw a0 , % pcrel_lo (. Lpcrel_hi2)(a0)

10 sw a2 , 24(a1)

11 addi a2 , sp , 48

12 sw a2 , 28(a1)

13 sw a0 , 44(a1)

14 addi a0 , sp , 32

15 sw a0 , 48(a1)

16 addi a0 , sp , 16

17 sw a0 , 64(a1)

18 mv a0 , sp

19 sw a0 , 80(a1)

20 lui a0 , 1

21 addi a0 , a0 , -1348

22 sw a0 , 0(a1)

23 li a0 , 0

24 addi sp , sp , 64

25 ret

Deliverable D5.1 ISOLDE Page: 42

D5.1 ISOLDE - confidential 30.04.2024

8.2 conv2d.cpp

extern float x [1][1][5][5];

extern float w [1][1][3][3];

extern float y [1][1][3][3];

int main (){

v4xi32 x_shape ={1 ,1 ,5 ,5};

v4xi32 w_shape ={1 ,1 ,3 ,3};

v4xi32 pad ={0 ,0 ,0 ,0}; // padding

v4xi32 str_dil ={1 ,1 ,0 ,0}; // stride_dilation

v4xi32 y_shape ;

y_shape = __builtin_onnx_conv2df32 ((float *) y

,(float *) x

, x_shape

,(float *) w

, w_shape

, pad

, str_dil);

return 0;

}

Invoking the compiler,

clang - cc1 -S

- triple riscv32 - unknown - elf - target - feature +v

- target - abi ilp32d - O3 -o -

conv2d . cpp

will generate the following flow of instructions:

1 vle32 .q Q0 , 1, 1, 0, 0

2 auipc a0 , % got_pcrel_hi (w)

3 lw a0 , % pcrel_lo (. Lpcrel_hi0)(a0)

4 auipc a1 , % got_pcrel_hi (x)

5 lw a1 , % pcrel_lo (. Lpcrel_hi1)(a1)

6 auipc a2 , % got_pcrel_hi (y)

7 lw a2 , % pcrel_lo (. Lpcrel_hi2)(a2)

8 vle32 .q Q1 , 0, 0, 0, 0

9 vle32 .q Q2 , 1, 1, 3, 3

10 vle32 .q Q3 , 1, 1, 5, 5

11 conv2d . f32 a2 , Q0 , a1 , Q3 , a0 , Q2 , Q1 , Q0

12 li a0 , 0

13 ret

